Advertisement

Influence of Ba2+ substitution on the microwave dielectric properties of Nd(Mg0.5Sn0.5)O3 ceramics

  • Yih-Chien Chen
  • Min-Zhe Weng
  • Yung-Yu Chen
Article

Abstract

The microwave dielectric properties of Nd(Mg0.5−xBaxSn0.5)O3 ceramics were examined with a view to their exploitation in mobile communication. The Nd(Mg0.5−xBaxSn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.47Ba0.03Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A density of 6.91 g/cm3, a dielectric constant (ε r ) of 19.14, a quality factor (Q × f) of 97,500 GHz, and a temperature coefficient of resonant frequency (τ f ) of −65.4 ppm/°C were obtained for Nd(Mg0.47Ba0.03Sn0.5)O3 ceramics that were sintered at 1,600 °C for 4 h.

Keywords

Dielectric Constant Sinter Temperature Apparent Density High Dielectric Constant Microwave Dielectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Science Council in Taiwan under Grant NSC 101-2221-E-262-009-.

References

  1. 1.
    H. Zhou, X. Liu, H. Wang, L. Fang, X. Chen, J. Mater. Sci. Mater. Electron. 24, 299 (2013)CrossRefGoogle Scholar
  2. 2.
    Y.C. Chen, R.J. Tsai, Mater. Chem. Phy. 129, 116 (2011)CrossRefGoogle Scholar
  3. 3.
    Y.C. Chen, S.L. Yao, C.Y. Wu, J. Mater. Sci. Mater. Electron. 23, 1320 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.C. Chen, Y.Y. Chen, S.L. Yao, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-012-0898-z
  5. 5.
    Y.C. Chen, M.D. Chen, J. Phys. Chem. Solids 72, 1447 (2011)CrossRefGoogle Scholar
  6. 6.
    R.D. Shannon, Acta Crystallogr. A32, 751 (1976)Google Scholar
  7. 7.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Technol. 8, 402 (1960)CrossRefGoogle Scholar
  8. 8.
    Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Technol. 33, 586 (1985)CrossRefGoogle Scholar
  9. 9.
    A.M. Glazer, Simple ways of determining perovskite structures. Acta Crystallogr. A31, 756 (1975)Google Scholar
  10. 10.
    I.M. Reaney, E.L. Collea, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)CrossRefGoogle Scholar
  11. 11.
    Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26, 2039 (2006)CrossRefGoogle Scholar
  12. 12.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  13. 13.
    B.D. Silverman, Phys. Rev. 125, 1921 (1962)CrossRefGoogle Scholar
  14. 14.
    W.S. Kim, T.H. Hong, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 3567 (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringLunghwa University of Science and TechnologyGueishan ShiangTaiwan
  2. 2.Department of Electronic EngineeringLunghwa University of Science and TechnologyGueishan ShiangTaiwan

Personalised recommendations