Skip to main content
Log in

Characterization of nanocrystalline Ni–Cu thin films electrodeposited onto ITO coated glass substrates: effect of pretreatment current density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Ni–Cu films were grown onto indium tin oxide coated glass substrates without and with galvanostatic pretreatment process at different current densities. In all cases, Ni–Cu films were electrodeposited at a constant deposition potential of −1,800 mV versus saturated calomel electrode. After that, the surface morphology and structural properties of electrodeposited Ni–Cu films in dependence of pretreatment current density were studied. X-ray diffraction analysis showed that all films have face-centered cubic structure and consist of segregated two Ni-rich and Cu-rich phases regardless of pretreatment current density. The compositional analysis carried out by energy dispersive X-ray spectroscopy revealed that all films contain almost 90 wt% Ni and 10 wt% Cu. The average crystallite size decreased with decreasing pretreatment current density towards more negative values without inducing significant changes in the composition of the films. It was found that the preferred orientation of all films is in the [111] direction regardless of pretreatment current density. The effect of galvanostatic pretreatment process on the surface morphology investigated using a scanning electron microscopy and an atomic force microcopy were also discussed by means of obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Kim, D.Y. Park, B.Y. Yoo, P.T.A. Sumodjo, N.V. Myung, Electrochim. Acta 48, 819 (2003)

    Article  CAS  Google Scholar 

  2. N.V. Myung, K. Nobe, J. Electrochem. Soc. 148, C136 (2001)

    Article  CAS  Google Scholar 

  3. J. Qin, J. Nogués, M. Mikhaylova, A. Roig, J.S. Munõz, M. Muhammed, Chem. Mater. 17, 1829 (2005)

    Article  CAS  Google Scholar 

  4. J. Resoff, D.R. Hamann, Phys. Rev. Lett. 50, 1998 (1983)

    Article  Google Scholar 

  5. H.A. Mizes, S. Park, W.A. Harrison, Phys. Rev. B 36, 4491 (1987)

    Article  Google Scholar 

  6. G. Reiss, J. Vancea, H. Wittmann, J. Zweck, H. Hoffmann, J. Appl. Phys. 67, 1156 (1990)

    Article  CAS  Google Scholar 

  7. J. Burger, G. Dietler, M. Binggeli, R. Christoph, O. Marti, Thin Solid Films 253, 308 (1994)

    Article  CAS  Google Scholar 

  8. L.C. Melo, P. de Lima-Neto, A.N. Correia, J. Appl. Electrochem. 41, 415 (2011)

    Article  CAS  Google Scholar 

  9. E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Menéndez, M. Estrader, S. Suriñach, M.D. Baró, J. Nogués, J. Sort, Adv. Funct. Mater. 20, 983 (2010)

    Article  CAS  Google Scholar 

  10. S.K. Ghosh, A.K. Grover, G.K. Dey, M.K. Totlani, Surf. Coat. Tech. 126, 48 (2000)

    Article  CAS  Google Scholar 

  11. I.G. Casella, M. Gatta, J. Electrochem. Soc. 149, B465 (2002)

    Article  CAS  Google Scholar 

  12. S.K. Ghosh, T. Bera, C. Saxena, S. Bhattacharya, G.K. Dey, J. Alloy. Compd. 475, 676 (2009)

    Article  CAS  Google Scholar 

  13. N. Rajasekaran, S. Mohan, J. Aroutchelvane, R. Jagannathan, J. Magn. Magn. Mater. 324, 2983 (2012)

    Article  CAS  Google Scholar 

  14. U. Sarac, R.M. Öksüzoğlu, M.C. Baykul, J. Mater. Sci.: Mater. Electron. 23, 2110 (2012)

    Article  CAS  Google Scholar 

  15. J.K. Chang, S.H. Hsu, I.W. Sun, W.T. Tsai, J. Phys. Chem. C 112, 1371 (2008)

    Article  CAS  Google Scholar 

  16. U. Sarac, M.C. Baykul, J. Alloy. Compd. 552, 195 (2013)

    Article  CAS  Google Scholar 

  17. B. Jia, L. Wang, BioResources 5, 2248 (2010)

    Google Scholar 

  18. C.Z. Wang, G.W. Meng, Q.Q. Fang, X.S. Peng, Y.W. Wang, Q. Fang, L.D. Zhang, J. Phys. D Appl. Phys. 35, 738 (2002)

    Article  CAS  Google Scholar 

  19. L. Sun, C.L. Chien, P.C. Searson, Chem. Mater. 16, 3125 (2004)

    Article  CAS  Google Scholar 

  20. D.S. Kong, J.M. Wang, H.B. Shao, J.Q. Zhang, C.N. Cao, J. Alloy. Compd. 509, 5611 (2011)

    Article  CAS  Google Scholar 

  21. M.J. Fesharaki, L. Peter, T. Schucknecht, D. Rafaja, J. Degi, L. Pogany, K. Neurohr, E. Szeles, G. Nabiyouni, I. Bakonyi, J. Electrochem. Soc. 159, D162 (2012)

    Article  CAS  Google Scholar 

  22. S.A. Nasser, H.H. Afify, S.A. El-Hakim, M.K. Zayed, Thin Solid Films 315, 327 (1998)

    Article  CAS  Google Scholar 

  23. L. Nzoghe-Mendome, J. Ebothe, A. Aloufy, I.V. Kityk, J. Alloy. Compd. 459, 232 (2008)

    Article  CAS  Google Scholar 

  24. A.J.C. Wilson, Proc. Phys. Soc. Lond. 80, 286 (1962)

    Article  Google Scholar 

  25. S. Singh, S. Basu, S.K. Ghosh, Appl. Surf. Sci. 255, 5910 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mustafa Arikel for technical help during the AFM measurements and K. Osman Ay for providing the EDX measurements. Also, the authors would like to thank Bilecik Seyh Edebali University, Turkey for XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Sarac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarac, U., Baykul, M.C. Characterization of nanocrystalline Ni–Cu thin films electrodeposited onto ITO coated glass substrates: effect of pretreatment current density. J Mater Sci: Mater Electron 24, 2777–2784 (2013). https://doi.org/10.1007/s10854-013-1170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1170-x

Keywords

Navigation