Characterization of nanocrystalline Ni–Cu thin films electrodeposited onto ITO coated glass substrates: effect of pretreatment current density

  • Umut Sarac
  • M. Celalettin Baykul


In this work, Ni–Cu films were grown onto indium tin oxide coated glass substrates without and with galvanostatic pretreatment process at different current densities. In all cases, Ni–Cu films were electrodeposited at a constant deposition potential of −1,800 mV versus saturated calomel electrode. After that, the surface morphology and structural properties of electrodeposited Ni–Cu films in dependence of pretreatment current density were studied. X-ray diffraction analysis showed that all films have face-centered cubic structure and consist of segregated two Ni-rich and Cu-rich phases regardless of pretreatment current density. The compositional analysis carried out by energy dispersive X-ray spectroscopy revealed that all films contain almost 90 wt% Ni and 10 wt% Cu. The average crystallite size decreased with decreasing pretreatment current density towards more negative values without inducing significant changes in the composition of the films. It was found that the preferred orientation of all films is in the [111] direction regardless of pretreatment current density. The effect of galvanostatic pretreatment process on the surface morphology investigated using a scanning electron microscopy and an atomic force microcopy were also discussed by means of obtained results.


Average Crystallite Size Crystalline Degree Texture Coefficient Coated Glass Substrate Electrodeposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Mustafa Arikel for technical help during the AFM measurements and K. Osman Ay for providing the EDX measurements. Also, the authors would like to thank Bilecik Seyh Edebali University, Turkey for XRD and SEM measurements.


  1. 1.
    D. Kim, D.Y. Park, B.Y. Yoo, P.T.A. Sumodjo, N.V. Myung, Electrochim. Acta 48, 819 (2003)CrossRefGoogle Scholar
  2. 2.
    N.V. Myung, K. Nobe, J. Electrochem. Soc. 148, C136 (2001)CrossRefGoogle Scholar
  3. 3.
    J. Qin, J. Nogués, M. Mikhaylova, A. Roig, J.S. Munõz, M. Muhammed, Chem. Mater. 17, 1829 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Resoff, D.R. Hamann, Phys. Rev. Lett. 50, 1998 (1983)CrossRefGoogle Scholar
  5. 5.
    H.A. Mizes, S. Park, W.A. Harrison, Phys. Rev. B 36, 4491 (1987)CrossRefGoogle Scholar
  6. 6.
    G. Reiss, J. Vancea, H. Wittmann, J. Zweck, H. Hoffmann, J. Appl. Phys. 67, 1156 (1990)CrossRefGoogle Scholar
  7. 7.
    J. Burger, G. Dietler, M. Binggeli, R. Christoph, O. Marti, Thin Solid Films 253, 308 (1994)CrossRefGoogle Scholar
  8. 8.
    L.C. Melo, P. de Lima-Neto, A.N. Correia, J. Appl. Electrochem. 41, 415 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Menéndez, M. Estrader, S. Suriñach, M.D. Baró, J. Nogués, J. Sort, Adv. Funct. Mater. 20, 983 (2010)CrossRefGoogle Scholar
  10. 10.
    S.K. Ghosh, A.K. Grover, G.K. Dey, M.K. Totlani, Surf. Coat. Tech. 126, 48 (2000)CrossRefGoogle Scholar
  11. 11.
    I.G. Casella, M. Gatta, J. Electrochem. Soc. 149, B465 (2002)CrossRefGoogle Scholar
  12. 12.
    S.K. Ghosh, T. Bera, C. Saxena, S. Bhattacharya, G.K. Dey, J. Alloy. Compd. 475, 676 (2009)CrossRefGoogle Scholar
  13. 13.
    N. Rajasekaran, S. Mohan, J. Aroutchelvane, R. Jagannathan, J. Magn. Magn. Mater. 324, 2983 (2012)CrossRefGoogle Scholar
  14. 14.
    U. Sarac, R.M. Öksüzoğlu, M.C. Baykul, J. Mater. Sci.: Mater. Electron. 23, 2110 (2012)CrossRefGoogle Scholar
  15. 15.
    J.K. Chang, S.H. Hsu, I.W. Sun, W.T. Tsai, J. Phys. Chem. C 112, 1371 (2008)CrossRefGoogle Scholar
  16. 16.
    U. Sarac, M.C. Baykul, J. Alloy. Compd. 552, 195 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Jia, L. Wang, BioResources 5, 2248 (2010)Google Scholar
  18. 18.
    C.Z. Wang, G.W. Meng, Q.Q. Fang, X.S. Peng, Y.W. Wang, Q. Fang, L.D. Zhang, J. Phys. D Appl. Phys. 35, 738 (2002)CrossRefGoogle Scholar
  19. 19.
    L. Sun, C.L. Chien, P.C. Searson, Chem. Mater. 16, 3125 (2004)CrossRefGoogle Scholar
  20. 20.
    D.S. Kong, J.M. Wang, H.B. Shao, J.Q. Zhang, C.N. Cao, J. Alloy. Compd. 509, 5611 (2011)CrossRefGoogle Scholar
  21. 21.
    M.J. Fesharaki, L. Peter, T. Schucknecht, D. Rafaja, J. Degi, L. Pogany, K. Neurohr, E. Szeles, G. Nabiyouni, I. Bakonyi, J. Electrochem. Soc. 159, D162 (2012)CrossRefGoogle Scholar
  22. 22.
    S.A. Nasser, H.H. Afify, S.A. El-Hakim, M.K. Zayed, Thin Solid Films 315, 327 (1998)CrossRefGoogle Scholar
  23. 23.
    L. Nzoghe-Mendome, J. Ebothe, A. Aloufy, I.V. Kityk, J. Alloy. Compd. 459, 232 (2008)CrossRefGoogle Scholar
  24. 24.
    A.J.C. Wilson, Proc. Phys. Soc. Lond. 80, 286 (1962)CrossRefGoogle Scholar
  25. 25.
    S. Singh, S. Basu, S.K. Ghosh, Appl. Surf. Sci. 255, 5910 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Elementary EducationBartın UniversityBartınTurkey
  2. 2.Department of PhysicsEskişehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations