Aloe vera gel as natural organic dielectric in electronic application



Aloe vera gel as an environmentally safe and natural material as an organic dielectric layer used in electronic application has been systematically investigated in this work. The commercially purchased gel was deposited on glass substrate by screen printing technique. Effect of drying temperature and duration on the quality of the Aloe vera layer had been examined. The lowest leakage current density was obtained in sample dried at 40 °C for 30 min but electrical breakdown voltage of the sample had reduced as the drying duration was extended more than 40 min. In addition, effect of successive applying the Aloe vera layer and distance between two electrodes on the leakage current of the dielectric had been reported. It was found that single layered Aloe vera had the lowest leakage current density but there was no significant effect of the distance between two electrodes on the leakage current of the dielectric. The produced natural Aloe vera gel after being dried was having a dielectric constant of 3.39 and therefore it had been demonstrated that this material is a potential candidate to be used as a dielectric material in an organic-based electronic device.


PMMA Dielectric Property Root Mean Square Gate Insulator Leakage Current Density 



One of the authors (L.Q.K.) would like to acknowledge the financial support given by the Ministry of Higher Education Malaysia under the MyMaster scholarship program and Shin-Etsu Chemical, Japan, for providing the cyanoethyl pullulan (CP) and cyanoethyl polyvinylalcohol (CPVA) for this research. The authors would also like to thank the Research Grant provided by Universiti Sains Malaysia through RU-PRGS (Grant No. 8035003) and USM Short Term Grant (Grant No. 60311034).


  1. 1.
    J. McGinness, P. Corry, P. Proctor, Science 183, 853–855 (1974)CrossRefGoogle Scholar
  2. 2.
    F. Chen, C. Chuang, Y. Lin, L. Kung, T. Chen, H.D. Shieh, Org. Electron. 7, 435–439 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Cantatore, E.J. Meijer, Solid-State Circuits Conf. (2003). doi: 10.1109/esscirc.2003.1257064 Google Scholar
  4. 4.
    W. Xu, S. Rhee, Org. Electron. 12, 2040–2046 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Oh, S. Pyo, M.H. Yi, S. Kwon, Org. Electron. 7, 77–84 (2006)CrossRefGoogle Scholar
  6. 6.
    W. Xu, S. Rhee, Org. Electron. 11, 996–1004 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Reyes, D.L. Carroll, W. Blau, J. Nanotechnol. (2011). doi: 10.1155/2011/589241 Google Scholar
  8. 8.
    J. Shim, L. Jung, S. Pyo, Y.K. Kim, Thin Solid Films 441, 284–286 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Someya, T. Sakurai, T. Sekitani, H. Kawaguchi, S. Iba, Y. Kato, Int. Conf. (2005). doi: 10.1109/icicdt.2005.1502590 Google Scholar
  10. 10.
    M. Yan, T.W. Kim, A.G. Erlat, M. Pellow, D.F. Foust, J. Liu, M. Schaepkens, C.M. Heller, P.A. McConnelee, T.P. Feist, A.R. Duggal, Proc. IEEE 93 (2005). doi: 10.1109/jproc.2005.851483
  11. 11.
    J. Puigdollers, C. Voz, I. Martin, A. Orpella, M. Vetter, R. Alcubilla, Electron Dev. (2005). doi: 10.1109/sced.2005.1504292 Google Scholar
  12. 12.
    T. Toda, J. Hanna, T. Tani, J. Appl. Phys. 101, 024505–024506 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Chou, H. Cheng, Advanced fabrication of organic thin-film transistors. SPIE Newsroom (2008). doi: 10.1117/2.1200802.1060 Google Scholar
  14. 14.
    X. Zhang, S.P. Tiwari, B. Kippelen, Org. Electron. 10, 1133–1140 (2009)CrossRefGoogle Scholar
  15. 15.
    L. Jiang, J. Zhang, D. Gamota, C.G. Takoudis, Org. Electron. 11, 959–963 (2010)CrossRefGoogle Scholar
  16. 16.
    W. Xu, S. Rhee, J. Mater. Chem. 19, 5250–5257 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Prime, S. Paul, Vac. 84, 1240–1243 (2010)CrossRefGoogle Scholar
  18. 18.
    K.N. Narayanan Unn, S. DabosSeignon, A.K. Pandey, J. Nunzi, Solid-State Electron. 52, 179–181 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Jang, D.H. Kim, Y.D. Park, J.H. Cho, M. Hwang, K. Cho, Appl. Phys. Lett. 87, 152103–152105 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Li, C. Liu, A. Kumatani, P. Darmawan, T. Minari, K. Tsukagoshi, Org. Electron. 13, 264–272 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Li, C. Liu, Y. Xu, T. Minari, P. Darmawan, K. Tsukagoshi, Org. Electron. 13, 815–819 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Wang, C. Xu, D. Mo, Electr. Insul. Mater. (1995). doi: 10.1109/iseim.1995.496518 Google Scholar
  23. 23.
    C. Jung, H. Cho, S. Lee, Y. Hong, C. Lee, D. Hwang, Curr. Appl. Phys. 10, 1132–1136 (2010)CrossRefGoogle Scholar
  24. 24.
    S.Y. Yang, S.H. Kim, K. Shin, H. Jeon, C.E. Park, Appl. Phys. Lett. 88, 173503–173507 (2006)CrossRefGoogle Scholar
  25. 25.
    S.W. Cho, D.S. Park, W.C. Jang, M.H. Cho, K.H. Yoo, K. Jeong, C.N. Whang, Y. Yi, K.B. Chung, J. Appl. Phys. 102, 064502–064505 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Chang, C. Wang, C. Huang, T. Tsai, T. Guo, T. Wen, Adv. Mater. 23, 4077–4081 (2011)CrossRefGoogle Scholar
  27. 27.
    E.D. Glowacki, M. IrimiaVladu, SPIE Newsroom (2012). doi: 10.1117/2.1201201.004054 Google Scholar
  28. 28.
    R.A. Hashmi, N. Bano, S. Khatoon, T. Ayub, Pak. J. Botany 26, 467–475 (1994)Google Scholar
  29. 29.
    O. Ksenzhek, S. Petrova, M. Kolodyazhny, Bulg. J. Plant Physiol. 30, 61–67 (2004)Google Scholar
  30. 30.
    S.O. Nelson, Proc. IEEE (2005). doi: 10.1109/imtc.2005.1604135 Google Scholar
  31. 31.
    S. Helhel, B. Colak, S. Ozen, Prog. Electromagn. Res. Lett. 7, 183–191 (2009)CrossRefGoogle Scholar
  32. 32.
    S.H. AlSheraji, A. Ismail, M.Y. Manap, S. Mustafa, R.M. Yusof, F.A. Hassan, LWT—Food Sci. Technol. 48, 291–296 (2012)Google Scholar
  33. 33.
    H. Yoshida, F. Takei, N. Sawatari, Fujitsu Sci. Tech. J. 38, 39–45 (2002)Google Scholar
  34. 34.
    S. Ikeda, H. Kumagai, K. Nakamura, Carbohydr. Res. 301, 51–59 (1997)CrossRefGoogle Scholar
  35. 35.
    K. Liedermann, L. Lapcik, J. Demeester Jr, Prope. Appl. Dielectr. Mater. (1997). doi: 10.1109/icpadm.1997.617657 Google Scholar
  36. 36.
    H. Djidjelli, D. Benachour, A. Boukerrou, O. Zefouni, J. MartinezVega, J. Fsrenc, M. Kaci, eXPRESS Polym. Lett. 1, 846–852 (2007)CrossRefGoogle Scholar
  37. 37.
    V.L. Finkenstadt, Appl. Microbiol. Biotechnol. 67, 735–745 (2005)CrossRefGoogle Scholar
  38. 38.
    K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, K.L. Ngai, The J. Phys. Chemi. B 112, 12816–12823 (2008)CrossRefGoogle Scholar
  39. 39.
    K. Kaminski, E. Kaminska, K.L. NgaI, M. Paluch, P. Wlodarczyk, A. Kasprzycka, W. Szeja, The J. Phys. Chem. B 113, 10088–10096 (2009)CrossRefGoogle Scholar
  40. 40.
    R. Seoudi, A.M.A. Nada, Carbohydr. Polym. 68, 728–733 (2007)CrossRefGoogle Scholar
  41. 41.
    Y. Ni, D. Turner, K.M. Yates, I. Tizard, Int. Immunopharmacol. 4, 1745–1755 (2004)CrossRefGoogle Scholar
  42. 42.
    A. Kumar, S. Banerjee, M. Deka, in Microscopy: Science, Technology, Applications and Education, ed. by A. MendezVilas, J. Diaz (Formatex, Spain, 2010), pp. 1755–1768Google Scholar
  43. 43.
    F.M. Li, A. Nathan, Y. Wu, B.S. Ong (Germany: Wiley-VCH Verlag GmbH & Co. KGaA,2011), pp. 13–49Google Scholar
  44. 44.
    F. Chen, C. Chu, J. He, Y. Yang, J. Lin, Appl. Phys. Lett. 85, 3295–3297 (2004)CrossRefGoogle Scholar
  45. 45.
    C.T. Ramachandra, P.S. Rao, Am. J. Agric. Biol. Sci. 3, 502–510 (2008)CrossRefGoogle Scholar
  46. 46.
    G. Maier, Prog. Polym. Sci. 26, 3–65 (2001)CrossRefGoogle Scholar
  47. 47.
    G.H. Maher, J.M. Wilson, S.G. Maher (Carts Asia, 2005), Accessed 2 Dec 2012
  48. 48.
    D.P. Singh, Y.N. Mohapatra, D.C. Agrawal, Mater. Sci. Eng. B 157, 58–65 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Electronic Materials Research Group, School of Materials and Mineral Resources EngineeringUniversiti Sains Malaysia, Engineering CampusNibong Tebal, Seberang Perai Selatan, PenangMalaysia

Personalised recommendations