Effects of CuO doping on the structure and properties lead-free KNN-LS piezoelectric ceramics

  • Hua Wang
  • Xia Zhai
  • Jiwen Xu
  • Changlai Yuan
  • Changrong Zhou


(0.95Na0.5K0.5NbO3-0.05LiSbO3)-x mol% CuO (KNN-LS-xCuO) lead-free piezoelectric ceramics have been fabricated by a conventional solid-state reaction route at a lower sintering temperature and the effects of CuO-dopant on structure and properties of KNN-LS ceramics have been studied. It is found that the addition of CuO significantly improves the sinterability and properties of KNN-LS ceramics. X-ray diffraction data shows that a small amount of CuO does not change the phase structure of KNN-LS and a dense microstructure with smaller and more uniform grains is developed, probably due to liquid-phase sintering. With the increase of CuO content x, the relative density, d 33 , k p , tanδ and Q m have been improved obviously when x < 0.45 due to the presence of the liquid phase and the refined grains, but excessive CuO would degrade the comprehensive properties of KNN-LS-xCuO ceramics. The best specimen with a high relative density of 98.53 % was fabricated when x = 0.45 at 1,060 °C, relating constants respectively are: d 33  = 175pC/N, k p  = 0.46, ε r  = 551.23, tanδ = 1.41 %, Q m  = 41.5.


Transient Liquid Phase Bismuth Titanate Mechanical Quality Factor Comprehensive Property Pure Perovskite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the financial support of the Guangxi Nature Science Foundations, Grant No. 2010GXNSFD013007.


  1. 1.
    B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross, Phys. Rev. B 63, 14103 (2000)CrossRefGoogle Scholar
  2. 2.
    P. Jarupoom, K. Pengpat, N. Pisitpipathsin, S. Eitssayeam, U. Inatha, G. Rujijanagul, T. Tunkasiri, Curr. Appl. Phys. 8, 253 (2008)CrossRefGoogle Scholar
  3. 3.
    Y. Yuan, E.Z. Li, B. Li, B. Tang, X.H. Zhou, J. Electron. Mater. 40, 2234 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Cui, X. Liu, M. Jiang, Y. Hu, Q. Su, H. Wang, J. Mater. Sci.: Mater. Electron. 23, 1342 (2012)CrossRefGoogle Scholar
  5. 5.
    R.Z. Zuo, C. Ye, X.S. Fang, Phys. Chem. Solids 69, 230 (2008)CrossRefGoogle Scholar
  6. 6.
    H.Y. Park, C.W. Ahn, K.H. Cho, S. Nahm, H.G. Lee, H.W. Kang, D.H. Kim, K.S. Park, J. Am. Ceram. Soc. 90, 4066 (2007)Google Scholar
  7. 7.
    Y.M. Li, Z.Y. Shen, L. Jiang, R.H. Liao, Z.M. Wang, Y. Hong, J. Electron. Mater. 41, 546 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Shao, J. Qiu, K. Zhu, X. Pang, Q. Meng, J. Mater. Sci.: Mater. Electron. 23, 846 (2012)CrossRefGoogle Scholar
  9. 9.
    J.G. Hao, Z.J. Xu, R.Q. Chu, Y.J. Zhang, Q. Chen, W. Li, P. Fu, G.Z. Zang, G.R. Li, Q.R. Yin, J. Electron. Mater. 39, 347 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Lin, K.W. Kwok, J. Mater. Sci.: Mater. Electron. 23, 501 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.M. Li, Z.Y. Shen, L. Jiang, F. Wu, Z.M. Wang, Y. Hong, R.H. Liao, J. Mater. Sci.: Mater. Electron. 22, 1409 (2011)CrossRefGoogle Scholar
  12. 12.
    H.C. Song, K.H. Cho, H.W. Park, Cheol-Woo Ahn, S. Nahmw, S. Nahmw, J. Am. Ceram. Soc. 90, 1812 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Zhen, J.F. Li, J. Am. Ceram. Soc. 89, 3669 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Wang, R. Zuo, L. Wang, J. Fang, X. Wang, L. Li, J. Mater. Sci.: Mater. Electron. 22, 458 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Shao, J. Qiu, K. Zhu, H. Gu, H. Ji, J. Mater. Sci.: Mater. Electron. 23, 1455 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hua Wang
    • 1
  • Xia Zhai
    • 1
  • Jiwen Xu
    • 1
  • Changlai Yuan
    • 1
  • Changrong Zhou
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations