Influence of film thickness and annealing atmosphere on the structural, optical and luminescence properties of nanocrystalline TiO2 thin films prepared by RF magnetron sputtering

  • Prabitha B. Nair
  • V. B. Justinvictor
  • Georgi P. Daniel
  • K. Joy
  • P. V. Thomas


TiO2 thin films were deposited onto quartz substrates by RF magnetron sputtering. Inorder to investigate the effect of film thickness on the structural and optical properties, films were deposited for different time durations, and post-annealed at 873 K. The influence of annealing atmosphere (air/oxygen) on the film properties was also investigated. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopy and photoluminescence (PL) spectroscopy. Films deposited at different time durations are amorphous-like in nature. From XRD patterns it can be inferred that deposition for longer duration is essential for achieving crystallisation in TiO2 thin films prepared by RF magnetron sputtering. The films exhibited good adherence to the substrate and are crack free as revealed by SEM images. Film thickness was found to increase with increase in sputtering time. The optical band gap of the films was found to decrease with increase in film thickness, which is consistant with XRD observations. Film thickness did not show any significant variation when annealed in both air and oxygen. Defect related PL emission in the visible region (blue) was observed in all the investigated films, which suggests the application of these films in optoelectronic display devices.


TiO2 Oxygen Vacancy TiO2 Film Quartz Substrate TiO2 Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (P.V.T) wishes to thank the University Grants Commission, New Delhi for the financial assistance (F.No. 39-503/2010(SR)).


  1. 1.
    G. San Vicente, A. Morales, M.T. Gutierrez, Thin Solid Films 403(404), 335 (2002)CrossRefGoogle Scholar
  2. 2.
    B.S. Richards, Prog. Photovolt. 12(4), 253 (2004)CrossRefGoogle Scholar
  3. 3.
    K. Zakrzewska, Vacuum 74(2), 335 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Kaito, Y. Oshima, K. Urabe, Jpn. J. Appl. Phys. Part 1 36(7A), 4423 (1997)CrossRefGoogle Scholar
  5. 5.
    Z.M. Qi, K. Itoh, M. Murabayash, C.R. Lavers, Opt. Lett. 25(19), 1427 (2000)CrossRefGoogle Scholar
  6. 6.
    M.D. Wiggins, M.C. Neison, C.R. Aita, J. Vac. Sci. Technol. A. 14(3), 772 (1996)CrossRefGoogle Scholar
  7. 7.
    F.C. Gennari, D.M. Pasquevich, J. Am. Ceram. Soc. 82, 1915 (1999)CrossRefGoogle Scholar
  8. 8.
    A.K. Sharma, R.K. Tareja, U. Wilker, W. Schade, Appl. Surf. Sci. 206, 137 (2003)CrossRefGoogle Scholar
  9. 9.
    V.G. Besserguenev, R.J.F. Pereira, M.C. Mateus, I.V. Khmelinskii, R.C. Nicula, E. Burkel, Int. J. Photoenergy 5(2), 99 (2003)CrossRefGoogle Scholar
  10. 10.
    A. De Giacomo, O. De Pascale, Appl. Phys. A 79(4–6), 1405 (2004)Google Scholar
  11. 11.
    L.C. Sun, P. Hou, Thin Solid Films 455(456), 525 (2004)CrossRefGoogle Scholar
  12. 12.
    M.J. Alam, D.C. Cameron, J. Sol–Gel Sci. Technol. 25(2), 137 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Dangtip, N. Sripongphan, N. Boonyopakorn, C. Thanachayanont, Ceram. Int. 35, 1281 (2009)CrossRefGoogle Scholar
  14. 14.
    Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Vacuum 81, 103 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Boukrouh, R. Bensaha, S. Bourgeois, E. Finot, M.C. Marco de Lucas, Thin Solid Films 516, 6353 (2008)CrossRefGoogle Scholar
  16. 16.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Appl. Surf. Sci. 257, 10869 (2011)CrossRefGoogle Scholar
  17. 17.
    C.H. Heo, S.B. Lee, J.H. Boo, Thin Solid Films 475, 183 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  19. 19.
    M. Sreemony, A. Bose, S. Sen, Phys. B 405, 85 (2010)CrossRefGoogle Scholar
  20. 20.
    S.H. Kim, Y.L. Choi, Y.S. Song, D.Y. Lee, S.J. Lee, Mater. Lett. 57, 343 (2002)CrossRefGoogle Scholar
  21. 21.
    D.G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, H. Itoh, Appl. Surf. Sci. 193, 287 (2002)CrossRefGoogle Scholar
  22. 22.
    Y.R. Park, K.J. Kim, Thin Solid Films 484, 34 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Tauc, Mater. Res. Bull. 5(8), 721 (1970)CrossRefGoogle Scholar
  24. 24.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  25. 25.
    L.V. Maneeshya, V.S. Anitha, S.S. Lekshmy, I.J. Berlin, P.B. Nair, G.P. Daniel, P.V. Thomas, K. Joy, J. Mater. Sci: Mater. Electron DOI  10.1007/s10854-012-0830-6
  26. 26.
    N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99, 16646 (1995)CrossRefGoogle Scholar
  27. 27.
    M. Gratzel, Heterogeneous Photochemical Electron Transfer (CRC Press, Boca Raton, 1989)Google Scholar
  28. 28.
    J. Lim, K. Shin, hW Kim, C. Lee, Mater.Sci.Engg.B 107, 301 (2004)CrossRefGoogle Scholar
  29. 29.
    A.K. Srivastava, M. Deepa, S. Bhandari, H. Fuess, Nanoscale Res. Lett. 4, 54 (2009)CrossRefGoogle Scholar
  30. 30.
    B. Liu, X. Zhao, Q. Zhao, X. He, J. Feng, J. Elect. Spect. Rel. Phenom. 148, 158 (2005)CrossRefGoogle Scholar
  31. 31.
    P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358(1–2), 122 (2000)CrossRefGoogle Scholar
  32. 32.
    K. Joy, I.J. Berlin, P.B. Nair, J.S. Lakshmi, G.P. Daniel, P.V. Thomas, J. Phys. Chem. Solids 72, 673 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Prabitha B. Nair
    • 1
  • V. B. Justinvictor
    • 1
  • Georgi P. Daniel
    • 1
  • K. Joy
    • 1
  • P. V. Thomas
    • 1
  1. 1.Thin Film Lab, Post Graduate and Research Department of PhysicsMar Ivanios CollegeThiruvananthapuramIndia

Personalised recommendations