Influence of rapid thermal annealing on the process of aluminum induced crystallization of amorphous Si

  • Xiao-Li Zhai
  • Rui-Qin Tan
  • Shi-Xun Dai
  • Wei-Yan Wang
  • Jin-Hua Huang
  • Wei-Jie Song


The effects of annealing methods on the crystallization process and microstructure of polycrystalline silicon (poly-Si) films obtained by aluminum-induced crystallization (AIC) of amorphous Si (a-Si) films were comparatively investigated. Glass/Al/a-Si structures were annealed by rapid thermal annealing (RTA) and conventional furnace at 500 °C for different times in Ar. As compared to furnace annealing, AIC of a-Si films annealed by RTA possesses a shorter period of nucleation time, a higher nucleation density and reduces the process time to form continuous poly-Si films. It is revealed that the continuous Si films obtained by both RTA and conventional furnace annealing are polycrystalline in nature, exhibiting good microstructures with Raman peaks at 518 cm−1 and full-width at half-maximums of 6.43–6.48 cm−1.


Rapid Thermal Annealing Furnace Annealing Conventional Furnace Rapid Thermal Annealing Process Rapid Thermal Annealing Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Professor Kwang-Leong Choy from the University of Nottingham for helpful discussion. This work is supported by the Ningbo Natural Science Foundation (No.2012A610120) and K.C.Wong Magna Fund in Ningbo University.


  1. 1.
    M.A. Green, Appl. Phys. A 96, 153 (2009)CrossRefGoogle Scholar
  2. 2.
    A.G. Aberle, J. Cryst. Growth 287, 386 (2006)CrossRefGoogle Scholar
  3. 3.
    S. Gall, C. Becker, E. Conrad, P. Dogan, F. Fenske, B. Gorka, K.Y. Lee, B. Rau, F. Ruske, B. Rech, Sol. Energy Mater. Sol. Cells 93, 1004 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Gall, C. Becker, K.Y. Lee, T. Sontheimer, B. Rech, J. Cryst. Growth 312, 1277 (2010)CrossRefGoogle Scholar
  5. 5.
    O. Nast, S. Brehme, S. Pritchard, A.G. Aberle, S.R. Wenham, Sol. Energy Mater. Sol. Cells 65, 385 (2001)CrossRefGoogle Scholar
  6. 6.
    J.D. Hwang, T.Y. Chi, J.C. Liu, C.Y. Kung, I.C. Husein, Japan. J. Appl. Phys. 45, 7675 (2006)CrossRefGoogle Scholar
  7. 7.
    O. Nast, S.R. Wenham, J. Appl. Phys. 88, 124 (2000)CrossRefGoogle Scholar
  8. 8.
    D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, V. Grigorov, M. Kamenova, Proceedings of 19th EPVSEC, (Paris, 2004), p. 371Google Scholar
  9. 9.
    I. Sieber, R. Schneider, I. Doerfel, P. Schubert-Bischoff, S. Gall, W. Fuhs, Thin Solid Films 427, 298 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Schneider, J. Klein, M. Muske, S. Gall, W. Fuhs, J. Non-Cryst, Solids 338–340, 127 (2004)Google Scholar
  11. 11.
    O. Nast, A.J. Hartmann, J. Appl. Phys. 88, 716 (2000)CrossRefGoogle Scholar
  12. 12.
    F. Kezzoula, A. Hammouda, M. Kechouane, P. Simon, S.E.H. Abaidia, A. Keffous, R. Cherfi, H. Menari, A. Manseri, Appl. Surf. Sci. 257, 9689 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Prathap, O. Tuzun, S. Roques, S. Schmitt, C. Maurice, A. Slaoui, Phys. Status Solidi C 3, 859 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Stinzianni, K. Dunn, Z.Y. Zhao, M. Rane-Fondacaro, H. Efstathiadis, P. Haldar, IEEE 34th Photovoltaic Specialists Conference (PVSC), (2009), p. 001643Google Scholar
  15. 15.
    J. Klein, J. Schneider, M. Muske, S. Gall, W. Fuhs, Thin Solid Films 451–452, 481 (2004)CrossRefGoogle Scholar
  16. 16.
    E. Pihan, A. Slaoui, P. Roca, I. Cabarrocas, A. Fosca, Thin Solid Films 451–452, 328 (2004)CrossRefGoogle Scholar
  17. 17.
    C. Ornaghi, G. Beaucarne, J. Poortmans, J. Nijs, R. Mertens, Thin Solid Films 451–452, 476 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Singh, J. Appl. Phys. 63, 59 (1988)CrossRefGoogle Scholar
  19. 19.
    R. Singh, M. Fakhruddin, K.F. Poole, Appl. Surf. Sci. 168, 198 (2000)CrossRefGoogle Scholar
  20. 20.
    R. Kakkad, J. Smith, W.S. Lau, S.J. Fonash, J. Appl. Phys. 65, 2069 (1989)CrossRefGoogle Scholar
  21. 21.
    C.W. Lee, C. Lee, Y.T. Kim, Appl. Phys. A 56, 123 (1993)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, S. Liao, Z. Ma, G. Yue, H. Diao, J. He, G. Kong, Y. Zhao, Z. Li, F. Yun, Appl. Surf. Sci. 135, 205 (1998)CrossRefGoogle Scholar
  23. 23.
    G. Viera, S. Huet, L. Boufendi, J. Appl. Phys. 90, 4175 (2001)CrossRefGoogle Scholar
  24. 24.
    E. Anastassakis, E. Liarokapis, J. Appl. Phys. 62, 3346 (1987)CrossRefGoogle Scholar
  25. 25.
    C.L. Wang, D.W. Fan, C.B. Wang, Z.R. Geng, H.L. Ma, S.F. Miao, Sci. China Phys. Mech. Astron 53, 1 (2010)Google Scholar
  26. 26.
    I. De Wolf, J. Vanhellemont, A. Romano-Rodrigues, H. Nortstrom, H.E. Maes, J. Appl. Phys. 71, 898 (1992)CrossRefGoogle Scholar
  27. 27.
    I. Per, A. Widenborg, G. Aberle, J. Cryst. Growth 242, 270 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiao-Li Zhai
    • 1
  • Rui-Qin Tan
    • 1
  • Shi-Xun Dai
    • 1
  • Wei-Yan Wang
    • 2
  • Jin-Hua Huang
    • 2
  • Wei-Jie Song
    • 2
  1. 1.College of Information Science and EngineeringNingbo UniversityNingboPeople’s Republic of China
  2. 2.Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations