Synthesis and characterization of flower like ZnO nanorods for dye-sensitized solar cells

  • M. Thambidurai
  • N. Muthukumarasamy
  • Dhayalan Velauthapillai
  • Changhee Lee


Flower like ZnO nanorods have been prepared by chemical bath deposition method. X-ray diffraction result shows that flower like ZnO nanorods exhibit hexagonal structure. Dye sensitized solar cells have been assembled by using ZnO nanorod film photoelectrode sensitized using natural dye extracted from daucus carota as sensitizer. The flower like ZnO nanorods have been used as photo-anode material to fabricate the dye sensitized solar cell which exhibited an overall light to electricity conversion efficiency of 0.78 % with a fill factor of 0.39, short-circuit current density of 3.70 mA/cm2 and open-circuit voltage of 0.26 V.


Solar Cell Power Conversion Efficiency Hexamine Chemical Bath Deposition Method Solar Cell Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Education, Science and Technology, Korea (2011-0031567).


  1. 1.
    S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001)CrossRefGoogle Scholar
  2. 2.
    D.-T. Phan, G.-S. Chung, Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens. Act. B Chemical 161, 341–348 (2012)CrossRefGoogle Scholar
  3. 3.
    N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418–421 (2002)CrossRefGoogle Scholar
  4. 4.
    S.H. Seo, W.C. Shin, J.S. Park, A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications. Thin Solid Films 416, 190–196 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002)CrossRefGoogle Scholar
  6. 6.
    M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, N. Sabari Arul, S. Agilan, R. Balasundaraprabhu, Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot. J. Mater. Sci. Mater. Electron. 22, 1662–1666 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Kopidakis, K.D. Benkstein, J. Van de Lagemaat, A.J. Frank, Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B. 107, 11307–11315 (2003)CrossRefGoogle Scholar
  8. 8.
    S.J. Chen, Y.C. Liu, C.L. Shao, R. Mu, Y.M. Lu, J.Y. Zhang, D.Z. Shen, X.W. Fan, Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 17, 586–590 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Zhou, L. Wu, Y. Gao, T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A Chem. 219, 188–194 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energ. Mater. Sol. Cells. 91, 566–571 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, C. Lee, Synthesis of garland like ZnO nanorods and their application in dye sensitized solar cells. Mater. Lett. 92, 104–107 (2013)CrossRefGoogle Scholar
  12. 12.
    G. Calogero, G. Di Marco, Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol. Energ. Mater. Sol. Cells. 92, 1341–1346 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Kushwaha, L. Bahadur, Characterization of some metal-free organic dyes as photosensitizer for nanocrystalline ZnO-based dye sensitized solar cells. Int. J. Hydrogen Energy 36, 11620–11627 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. J. Electrochem. Soc. 152, E68–E73 (2005)CrossRefGoogle Scholar
  15. 15.
    S.Y. Huang, G. Schlichthorl, A.J. Nozik, M. Gratzel, A.J. Frank, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B. 101, 2576–2582 (1997)CrossRefGoogle Scholar
  16. 16.
    D. Cahen, G. Hodes, M. Gratzel, J.F. Guillemoles, I. Riess, Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B. 104, 2053–2059 (2000)CrossRefGoogle Scholar
  17. 17.
    C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (1–3) (2007)Google Scholar
  18. 18.
    J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (1–3) (2005)Google Scholar
  19. 19.
    E.K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69–74 (2007)CrossRefGoogle Scholar
  20. 20.
    K.S. Leschkies, R. Divkar, J. Basu, E. Enache Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRefGoogle Scholar
  21. 21.
    D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442, 348–353 (2007)CrossRefGoogle Scholar
  22. 22.
    P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Gratzel, D.D.C. Bradely, J.R. Durrant, J. Nelson, Hybrid polymer/Zinc Oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. 110, 7635–7639 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Thambidurai
    • 1
  • N. Muthukumarasamy
    • 2
  • Dhayalan Velauthapillai
    • 3
  • Changhee Lee
    • 1
  1. 1.Department of Electrical and Computer Engineering, Global Frontier Center for Multiscale Energy SystemsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia
  3. 3.Department of EngineeringUniversity College of BergenBergenNorway

Personalised recommendations