Transparent and electrical properties of Ga-doped Zn1−x Cd x O films post-annealed in vacuum and nitrogen

  • L. B. Duan
  • X. R. Zhao
  • J. M. Liu
  • W. C. Geng
  • C. D. Cao
  • M. M. Cao


(Cd,Ga)-codoped ZnO films were prepared by sol–gel method. The codoping films retained wurtzite structure of ZnO, and showed preferential c-axis orientation. The transparent and electrical properties of the films post-annealed in vacuum and nitrogen were investigated. The transmittances of the films were degraded to 60–70 % by vacuum annealing, but enhanced to 80–90 % by nitrogen annealing. The carrier concentration increased, while resistivity decreased with the narrowing band gap, i.e. Cd doping could increase the conductivity of the Ga-doped Zn1−x Cd x O films by narrowing their band gap. The band gap modification was attributed to both Cd doping (majority) and Burstein–Moss effect (minority). The resistivity of nitrogen annealing films was one order higher than that of vacuum annealing films. It seemed that the transmittance and conductivity was irreconcilable, while the trade-off between them might be modulated by different post-annealing ambient.


Carrier Concentration Hall Mobility Transparent Conducting Oxide Vacuum Annealing Nitrogen Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20106102120051), NPU Foundation for Fundamental Research (NPU-FFR-JC201017), and National Natural Science Foundation of China (Grant No. 51172186).


  1. 1.
    A.L. Dawar, J.C. Joshi, J. Mater. Sci. 19, 1–23 (1984)CrossRefGoogle Scholar
  2. 2.
    D.J. Cohen, K.C. Ruthe, S.A. Barnett, J. Appl. Phys. 96, 459–467 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Minami, MRS Bull. 25, 38–44 (2000)CrossRefGoogle Scholar
  4. 4.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875–1877 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, J. Appl. Phys. 108, 103721 (2010)CrossRefGoogle Scholar
  6. 6.
    Z.Z. Li, Z.Z. Chen, W. Huang, S.H. Chang, X.M. Ma, Appl. Surf. Sci. 257, 8486–8489 (2011)CrossRefGoogle Scholar
  7. 7.
    L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.N. Sun, H.Y. Xie, J. Mater. Sci.: Mater. Electron. 23, 1016–1021 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Yuan, L.P. Zhu, Z.Z. Ye, X.Q. Gu, Appl. Surf. Sci. 256, 1452–1454 (2009)CrossRefGoogle Scholar
  9. 9.
    H.-K. Kim, K.-J. Ahn, H.K. Jang, H.S. Lee, J. Electrochem. Soc. 159, H38–H43 (2012)CrossRefGoogle Scholar
  10. 10.
    V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 100, 033713 (2006)CrossRefGoogle Scholar
  11. 11.
    P.K. Nayak, J.H. Yang, J.W. Kim, S.J. Chung, J.W. Jeong, C.H. Lee, Y.T. Hong, J. Phys. D Appl. Phys. 42, 035102 (2009)CrossRefGoogle Scholar
  12. 12.
    J.M. Liu, X.R. Zhao, L.B. Duan, H.N. Sun, X.J. Bai, L. Chen, C.L. Chen, Appl. Surf. Sci. 258, 6297–6301 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett. 78, 1237–1239 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, J. Appl. Phys. 106, 084306 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Minemoto, S. Harada, H. Takakura, Curr. Appl. Phys. 12, 171–173 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, S. Niki, Appl. Phys. Lett. 85, 1374–1376 (2004)CrossRefGoogle Scholar
  17. 17.
    X.C. Wang, G.M. Li, Y.H. Wang, Chem. Phys. Lett. 469, 308–312 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Wang, Z. Huang, J.W. Xu, L. Yang, M.F. Ren, J. Mater. Sci.: Mater. Electron. 21, 1115–1118 (2010)CrossRefGoogle Scholar
  19. 19.
    C. Harada, H.-J. Ko, H. Makino, T. Yao, Mater. Sci. Semicond. Process. 6, 539–541 (2003)CrossRefGoogle Scholar
  20. 20.
    W. Wei, C.M. Jin, J. Narayan, R.J. Narayan, Solid State Commun. 149, 1670–1673 (2009)CrossRefGoogle Scholar
  21. 21.
    M.W. Zhu, J. Gong, C. Sun, J.H. Xia, X. Jiang, J. Appl. Phys. 104, 073113 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 122, 31–43 (1984)CrossRefGoogle Scholar
  23. 23.
    A. Mahmood, N. Ahmed, Q. Raza, T.M. Khan, M. Mehmood, M.M. Hassan, N. Mahmood, Phys. Scr. 82, 065801 (2010)CrossRefGoogle Scholar
  24. 24.
    L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.N. Sun, H.Y. Xie, J. Sol-Gel. Sci. Technol. 62, 344–350 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Sharma, R.M. Mehra, Appl. Surf. Sci. 255, 2527–2532 (2008)CrossRefGoogle Scholar
  26. 26.
    G. Li, X.B. Zhu, X.W. Tang, W. Song, Z.R. Yang, J.M. Dai, J. Alloys Comp. 509, 4816–4823 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.K. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, B. Park, Appl. Phys. Lett. 96, 171902 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Bruneaux, H. Cachet, M. Froment, A. Messad, Thin Solid Films 197, 129–142 (1991)CrossRefGoogle Scholar
  29. 29.
    E. Burstein, Phys. Rev. 93, 632–633 (1954)CrossRefGoogle Scholar
  30. 30.
    T.S. Moss, Proc. Phys. Soc. Lond., Sect. B 67, 775–782 (1954)CrossRefGoogle Scholar
  31. 31.
    W.J. Lee, S.J. Shin, D.-R. Jung, J.M. Kim, C.W. Nahm, T. Moon, B.W. Park, Current. Appl. Phys. 12, 628–631 (2012)Google Scholar
  32. 32.
    S.M. Sze, Physics of Semiconductor Physics, 2nd edn. (Wiley, New York, 1981), pp. 17–19Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. B. Duan
    • 1
  • X. R. Zhao
    • 1
  • J. M. Liu
    • 1
  • W. C. Geng
    • 1
  • C. D. Cao
    • 1
  • M. M. Cao
    • 1
  1. 1.Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education of China and School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations