Skip to main content
Log in

Transparent and electrical properties of Ga-doped Zn1−x Cd x O films post-annealed in vacuum and nitrogen

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Cd,Ga)-codoped ZnO films were prepared by sol–gel method. The codoping films retained wurtzite structure of ZnO, and showed preferential c-axis orientation. The transparent and electrical properties of the films post-annealed in vacuum and nitrogen were investigated. The transmittances of the films were degraded to 60–70 % by vacuum annealing, but enhanced to 80–90 % by nitrogen annealing. The carrier concentration increased, while resistivity decreased with the narrowing band gap, i.e. Cd doping could increase the conductivity of the Ga-doped Zn1−x Cd x O films by narrowing their band gap. The band gap modification was attributed to both Cd doping (majority) and Burstein–Moss effect (minority). The resistivity of nitrogen annealing films was one order higher than that of vacuum annealing films. It seemed that the transmittance and conductivity was irreconcilable, while the trade-off between them might be modulated by different post-annealing ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.L. Dawar, J.C. Joshi, J. Mater. Sci. 19, 1–23 (1984)

    Article  CAS  Google Scholar 

  2. D.J. Cohen, K.C. Ruthe, S.A. Barnett, J. Appl. Phys. 96, 459–467 (2004)

    Article  CAS  Google Scholar 

  3. T. Minami, MRS Bull. 25, 38–44 (2000)

    Article  CAS  Google Scholar 

  4. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875–1877 (2003)

    Article  CAS  Google Scholar 

  5. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, J. Appl. Phys. 108, 103721 (2010)

    Article  Google Scholar 

  6. Z.Z. Li, Z.Z. Chen, W. Huang, S.H. Chang, X.M. Ma, Appl. Surf. Sci. 257, 8486–8489 (2011)

    Article  CAS  Google Scholar 

  7. L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.N. Sun, H.Y. Xie, J. Mater. Sci.: Mater. Electron. 23, 1016–1021 (2012)

    Article  CAS  Google Scholar 

  8. W. Yuan, L.P. Zhu, Z.Z. Ye, X.Q. Gu, Appl. Surf. Sci. 256, 1452–1454 (2009)

    Article  CAS  Google Scholar 

  9. H.-K. Kim, K.-J. Ahn, H.K. Jang, H.S. Lee, J. Electrochem. Soc. 159, H38–H43 (2012)

    Article  CAS  Google Scholar 

  10. V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 100, 033713 (2006)

    Article  Google Scholar 

  11. P.K. Nayak, J.H. Yang, J.W. Kim, S.J. Chung, J.W. Jeong, C.H. Lee, Y.T. Hong, J. Phys. D Appl. Phys. 42, 035102 (2009)

    Article  Google Scholar 

  12. J.M. Liu, X.R. Zhao, L.B. Duan, H.N. Sun, X.J. Bai, L. Chen, C.L. Chen, Appl. Surf. Sci. 258, 6297–6301 (2012)

    Article  CAS  Google Scholar 

  13. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett. 78, 1237–1239 (2001)

    Article  CAS  Google Scholar 

  14. M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, J. Appl. Phys. 106, 084306 (2009)

    Article  Google Scholar 

  15. T. Minemoto, S. Harada, H. Takakura, Curr. Appl. Phys. 12, 171–173 (2012)

    Article  Google Scholar 

  16. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, S. Niki, Appl. Phys. Lett. 85, 1374–1376 (2004)

    Article  CAS  Google Scholar 

  17. X.C. Wang, G.M. Li, Y.H. Wang, Chem. Phys. Lett. 469, 308–312 (2009)

    Article  CAS  Google Scholar 

  18. H. Wang, Z. Huang, J.W. Xu, L. Yang, M.F. Ren, J. Mater. Sci.: Mater. Electron. 21, 1115–1118 (2010)

    Article  CAS  Google Scholar 

  19. C. Harada, H.-J. Ko, H. Makino, T. Yao, Mater. Sci. Semicond. Process. 6, 539–541 (2003)

    Article  CAS  Google Scholar 

  20. W. Wei, C.M. Jin, J. Narayan, R.J. Narayan, Solid State Commun. 149, 1670–1673 (2009)

    Article  CAS  Google Scholar 

  21. M.W. Zhu, J. Gong, C. Sun, J.H. Xia, X. Jiang, J. Appl. Phys. 104, 073113 (2008)

    Article  Google Scholar 

  22. S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 122, 31–43 (1984)

    Article  CAS  Google Scholar 

  23. A. Mahmood, N. Ahmed, Q. Raza, T.M. Khan, M. Mehmood, M.M. Hassan, N. Mahmood, Phys. Scr. 82, 065801 (2010)

    Article  Google Scholar 

  24. L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.N. Sun, H.Y. Xie, J. Sol-Gel. Sci. Technol. 62, 344–350 (2012)

    Article  CAS  Google Scholar 

  25. M. Sharma, R.M. Mehra, Appl. Surf. Sci. 255, 2527–2532 (2008)

    Article  CAS  Google Scholar 

  26. G. Li, X.B. Zhu, X.W. Tang, W. Song, Z.R. Yang, J.M. Dai, J. Alloys Comp. 509, 4816–4823 (2011)

    Article  CAS  Google Scholar 

  27. Y.K. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, B. Park, Appl. Phys. Lett. 96, 171902 (2010)

    Article  Google Scholar 

  28. J. Bruneaux, H. Cachet, M. Froment, A. Messad, Thin Solid Films 197, 129–142 (1991)

    Article  CAS  Google Scholar 

  29. E. Burstein, Phys. Rev. 93, 632–633 (1954)

    Article  CAS  Google Scholar 

  30. T.S. Moss, Proc. Phys. Soc. Lond., Sect. B 67, 775–782 (1954)

    Article  Google Scholar 

  31. W.J. Lee, S.J. Shin, D.-R. Jung, J.M. Kim, C.W. Nahm, T. Moon, B.W. Park, Current. Appl. Phys. 12, 628–631 (2012)

    Google Scholar 

  32. S.M. Sze, Physics of Semiconductor Physics, 2nd edn. (Wiley, New York, 1981), pp. 17–19

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20106102120051), NPU Foundation for Fundamental Research (NPU-FFR-JC201017), and National Natural Science Foundation of China (Grant No. 51172186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, L.B., Zhao, X.R., Liu, J.M. et al. Transparent and electrical properties of Ga-doped Zn1−x Cd x O films post-annealed in vacuum and nitrogen. J Mater Sci: Mater Electron 24, 2116–2121 (2013). https://doi.org/10.1007/s10854-013-1067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1067-8

Keywords

Navigation