Synthesis and characterization of low particle size nanocrystalline SnSe thin films

  • I. K. El Zawawi
  • Manal A. Mahdy


Tin selenide (SnSe) nanocrystalline thin films of different thickness from 15 to 70 nm were prepared by inert gas condensation technique. Argon gas flow and substrate temperature were kept constant during deposition process at 2 × 10−3 Torr and 27 °C respectively. Polycrystalline orthorhombic phase structured was deduced for the prepared SnSe ingot powder by X-ray diffraction pattern. The grazing incident in-plane X-ray diffraction (GIIXD) pattern showed nanocrystalline orthorhombic structure for deposited SnSe thin film. The TEM micrographs showed that thin films were nanocrystalline with particle size in the range from 2 to 5.7 nm. The optical band gap Eg of the thin films due to direct allowed transition have values ranging from 2.5 to 2.13 eV as the particle size increases from 2 to 5.7 nm. The photoconductivity spectra of the nanostructured SnSe thin films of different particle size showed transitions at 2.45, 2.34 and 2.21 eV for films of different particle size.


SnSe Memory Switching Photoconductivity Signal SnSe Film Transmission Electron Microscope Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Steiner, Semiconductor Nanostructures for Optoelectronic Applications (Artech House, INC., Boston, London, 2004)Google Scholar
  2. 2.
    B. Pejova, I. Grozdanova, Mater. Chem. Phys. 90, 35 (2005)CrossRefGoogle Scholar
  3. 3.
    V.C. Costa, Y. Shen, K.L. Bray, J. Non-Cryst Solids 304, 217 (2002)CrossRefGoogle Scholar
  4. 4.
    S.N. Sarangi, S.N. Sahu, Physica E 23, 159 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Sharma, G. Singh, A. Thakur, G.S.S. Saini, N. Goyal, S.K. Tripathi, J. Optoelectron. Adv. Mater. 7, 2085 (2005)Google Scholar
  6. 6.
    K. Ananthi, S. Dhanapandian, C. Manoharan, K. Thilagavathy, N. Muthukumarasamy, K.R. Murali, Int. J. Curr. Phys. Sci. 2, 14 (2012)Google Scholar
  7. 7.
    B. Pejova, A. Tanusevski, J. Phys. Chem. C 112, 3525 (2008)CrossRefGoogle Scholar
  8. 8.
    V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Science 324, 1542 (2009)CrossRefGoogle Scholar
  9. 9.
    M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 6, 132 (1991)CrossRefGoogle Scholar
  10. 10.
    A. Bennouna, P.Y. Tessier, M. Priol, Q. Dang Tran, S. Robin, Phys. Status Solidi B 117, 51 (1983)CrossRefGoogle Scholar
  11. 11.
    K. Bindu, P.K. Nair, Semicond. Sci. Technol. 19, 1348 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Subba Rao, B.K. Samanata Ray, A.K. Chaudhuri, Thin Solid Films 165, 257 (1988)CrossRefGoogle Scholar
  13. 13.
    B. Pejova, I. Grozdanov, Thin Solid Films 515, 5203 (2007)CrossRefGoogle Scholar
  14. 14.
    N.A. Okereke, A.J. Ekpunobi, Chalcogenide Lett. 7, 531 (2010)Google Scholar
  15. 15.
    M.A. Franzman, C.W. Schlenker, M.E. Thompson, R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Kumar, V. Sharma, U. Parihar, R. Sachdeva, N. Padha, C.J. Panchal, J. Nano-Electron. Phys. 3, 117 (2011)Google Scholar
  17. 17.
    C.N.R. Rao, P.J. Thomas, G.U. Kulkarni, Nanocrystals: Synthesis Properties and Applications (Springer, New York, 2007)Google Scholar
  18. 18.
    Z. Zainal, S. Nagalingam, A. Kassim, M.Z. Hussein, W.M.M. Yunus, Mater. Sci. 21, 225 (2003)Google Scholar
  19. 19.
    W. Zhang, Z. Yang, J. Liu, L. Zhang, Z. Hui, W. Yu, Y. Qian, L. Chen, X. Liu, J. Cryst. Growth 217, 157 (2000)CrossRefGoogle Scholar
  20. 20.
    B.S.R. Reddy, Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications (InTech, Croatia, 2011)CrossRefGoogle Scholar
  21. 21.
    Y. Masuda, Nanocrystals (Sciyo, Croatia, 2010)CrossRefGoogle Scholar
  22. 22.
    K. Takahashi, A. Yoshikawa, A. Sandhu, Wide Band Gap Semiconductors (Springer, Berlin, 2007)CrossRefGoogle Scholar
  23. 23.
    S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, UK, 1998)CrossRefGoogle Scholar
  24. 24.
    N. Kumar, U. Parihar, R. Kumar, K.J. Patel, C.J. Panchal, N. Padha, Am. J. Mater. Sci 2, 41 (2012)CrossRefGoogle Scholar
  25. 25.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
  26. 26.
    Y. Zhang, G. Li, B. Zhang, L. Zhang, Mater. Lett. 58, 2279 (2004)CrossRefGoogle Scholar
  27. 27.
    R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Electron. Mater. Lett. 7, 31 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London and New York, 1974)CrossRefGoogle Scholar
  29. 29.
    G. Konstantatos, E.H. Sargent, Infrared Phys. Technol. 54, 278 (2011)CrossRefGoogle Scholar
  30. 30.
    C.A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Solid State Physics DepartmentNational Research CenterDokki, CairoEgypt

Personalised recommendations