Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene

  • Pallab Bhattacharya
  • Chapal Kumar Das


Graphene and its nanocomposites were prepared via solution mixing process. Graphene based polymer nanocomposites were prepared by two step process. Firstly, graphene/poly(3-methyl thiophene)(PMT)/BaTiO3 nanocomposite was prepared by in situ chemical oxidation polymerization technique. In the second step these nanocomposites were dispersed in thermoplastic polyurethane (TPU) matrix by solution blending process. All the four nanocomposites in TPU [30 % modified graphene (P1), 30 % Poly(3-methyl thiophene) (P2), 30 % graphene/PMT/BaTiO3 (P3) and 15 % graphene/PMT/BaTiO3 + 15 % Fe3O4 (P4)] were analyzed by different analytical techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Microwave absorbing property was measured by Agilent vector network analyzer (ENA E5071C) in the X-band region (8–12 GHz). Microwave absorption result was interpreted with the help of complex permittivity and permeability of the prepared materials. Matching of both dielectric loss and magnetic loss is essential for an effective radar absorbing material (RAM). P1, P2, P3 and P4 showed the maximum return loss of −14.37, −9.3, −30.02 and −47.59 dB respectively. Thermal stability of the RAMs was determined by the help of thermogravimetric analysis (TGA) instrument. Among the all, P4 showed better thermal property. All results support their use as RAM in different field.


BaTiO3 Graphene Sheet Microwave Absorption Thermo Gravimetric Analysis Magnetic Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to CSIR, New Delhi, INDIA for their financial support in this work. Authors are also thankful to IIT Kharagpur, India.


  1. 1.
    L. Zhou, W. Zhou, J. Su, F. Luo, D. Zhu, Y. Dong, Appl. Surf. Sci. 258, 2691–2696 (2012)CrossRefGoogle Scholar
  2. 2.
    J.M. Zhao, W.X. An, D.A. Li, X. Yang, Syn. Met. 161, 2144–2148 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Lu, Q. Liang, L. Xue, Appl. Surf. Sci. 258, 4782–4787 (2012)CrossRefGoogle Scholar
  4. 4.
    X. Chen, G. Wang, Y. Duan, S. Liu, J. Appl. Phys. 40, 1827–1830 (2007)Google Scholar
  5. 5.
    T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281, 195–205 (2004)CrossRefGoogle Scholar
  6. 6.
    Z.G. Fan, G.H. Luo, Z.G. Zhang, L. Zhou, F. Wei, Mat. Sci. Eng. B-SOLID. 132, 85–89 (2006)CrossRefGoogle Scholar
  7. 7.
    J.L. Wojkiewicz, S. Fauveaux, J.L. Miane, Syn. Met. 135, 127–128 (2003)CrossRefGoogle Scholar
  8. 8.
    M.A. Soto-Oviedo, O.A. Arau jo, R. Faez, M.C. Rezende, M.A. De Paoli, Syn. Met. 156, 1249–1255 (2006)CrossRefGoogle Scholar
  9. 9.
    X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)CrossRefGoogle Scholar
  10. 10.
    R. Hao, W. Qian, L.H. Zhang, Y.L. Hou, Chem. Commun. 48, 6576–6578 (2008)CrossRefGoogle Scholar
  11. 11.
    Z. Ma, C. Cao, J. Yuan, Q. Liu, J. Wang, Appl. Surf. Sci. 258, 7556–7561 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673–11677 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Zhanga, H. Zhangb, G. Zengc, Adv. Mat. Res. 194, 520–523 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Saib, L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jerome, I. Huynen, IEEE. T. Micro. Theory 54, 2745–2754 (2006)CrossRefGoogle Scholar
  15. 15.
    L.J. Deng, M.G. Han, Appl. Phys. Lett. 91, 023119-1 (2007)Google Scholar
  16. 16.
    R.T. Lv, A.Y. Cao, F.Y. Kang, W.X. Wang, J.Q. Wei, J.L. Gu, K.L. Wang, D.H. Wu, J. Phys. Chem. C 111, 11475–11479 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang, Y. Wu, Appl. Surf. Sci. 258, 3659–3666 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. Lett. 98, 072906-1 (2011)Google Scholar
  19. 19.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Zhan, F. Meng, X. Yang, R. Zhao, X. Liu, Mater. Sci. Eng. B-Adv. 176, 1333–1339 (2011)CrossRefGoogle Scholar
  21. 21.
    W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, P. Chen, ACS Appl. Mater. Interfaces 3, 3839–3845 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, D.J. He, J. Alloys, Compound 489, 252–256 (2010)CrossRefGoogle Scholar
  23. 23.
    S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He, J. Phys. D Appl. Phys. 42, 055004 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, J. Power Sour. 80, 142–148 (1999)CrossRefGoogle Scholar
  25. 25.
    M. Mastragostino, C. Arbizzani, F. Sovai, J. Power Sour. 97–98, 812–815 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Das, A. Mandal, C.K. Das, Nano Trends: J. Nanotechnol. Appl. 11, 01–07 (2011)CrossRefGoogle Scholar
  27. 27.
    C.K. Das, A. Mandal, J. Mater. Sci. Res. 1, 45–53 (2012)Google Scholar
  28. 28.
    W. Qian, Z. Chen, M. Eastman, S. Cottingham, B. Manhat, A. Goforth, J. Jiao, Ultramicroscopy. (2011). doi: 10.1016/j.ultramic.2011.11.010
  29. 29.
    J. Deng, Y. Peng, C. He, X. Long, P. Li, A.S.C. Chan, Polym. Int. 52, 1182–1187 (2003)CrossRefGoogle Scholar
  30. 30.
    Y.R. Gang, J. Magn. Magn. Mater. 323, 1805–1810 (2011)CrossRefGoogle Scholar
  31. 31.
    E. Michielssen, J. Sajer, S. Ranjithan, R. Mittra, IEEE. T. Micro. Theory 41, 1024–1030 (1993)CrossRefGoogle Scholar
  32. 32.
    D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70, 400 (2010)CrossRefGoogle Scholar
  33. 33.
    X.Y. Fang, M.S. Cao, X.L. Shi, Z.L. Hou, W.L. Song, J. Yuan, J. Appl. Phys. 107, 054304 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.J. Chen, M.S. Cao, T.H. Wang, Q. Wan, Appl. Phys. Lett. 84, 3367–3370 (2004)CrossRefGoogle Scholar
  35. 35.
    D.L. Zhao, X. Li, Z.M. Shen, Mater. Sci. Eng. B-Adv. 150, 105 (2008)CrossRefGoogle Scholar
  36. 36.
    A.L. Paula, M.C. Rezende, J.J. Barroso, J. Aeros, Technol. Mange. 3, 59–64 (2011)Google Scholar
  37. 37.
    V. Raja, A.K. Sharma, V.V.R. Narasimha, Mater. Lett. 58, 3242–3247 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, ACS Appl. Mater. Interface 2, 927–933 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Gupta, V. Choudhary, Compos. Sci. Technol. 71, 1563–1568 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.F. Zhua, L. Zhangb, T. Natsukic, Y.Q. Fud, Q.Q. Ni, Syn. Met. 162, 337–343 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations