Wetting behavior and elastic properties of low alpha SAC105 and pure Sn solder

  • Santosh Kumar
  • Dohyun Jung
  • JaePil Jung


The issue of soft error in microelectronics packaging have necessitated the development of low alpha (LA) activity solders as, as solders are found to be major sources of radiation in electronic devices that causes soft error. Low alpha ray emitter Sn and Sn–1.0 %Ag–0.5 %Cu (SAC105) solders were prepared and their alpha activity was measured using Ultra Low Background Alpha Particle Counting Systems. The solders are confirmed to be low alpha solders having activity less than 0.005 α/h/cm2 (LC3 Grade). Microstructure of the LA SAC105 and Sn are characterized using scanning electron microscopy. Wetting balance tests are conducted to assess their solderability at different temperatures. Elastic properties i.e. Young Modulus and hardness were determined using Vickers hardness test and Nanoindentation technique. All the solders show good wettability and solderability having zero cross time less than 1.5 s. The wettability of low alpha solders is better as compared to the normal ones. Hardness results show the reduction in hardness of the LA solders as compared to normal ones. This is attributed to removal of radioactive trace impurities as the latter results in high hardness due to solid-solution hardening mechanism. Nanoindentation results shows the scatter in the values of hardness and Young’s Modulus for different IMCs phases found in solder joint with Cu and in bulk.


Contact Angle Solder Joint Solder Alloy Molten Solder Bulk Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.C. May, M.H. Woods, IEEE T. Electron Dev. 26, 2 (1979)CrossRefGoogle Scholar
  2. 2.
    R. Baumann, IEEE Des. Test Comput. 22, 258 (2005)CrossRefGoogle Scholar
  3. 3.
    R. Baumann, IEEE Trans. Device Mater. Reliab. 5, 305 (2005)Google Scholar
  4. 4.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  5. 5.
    H. Shimokawa, T. Soga, K. Serizawa, Mater. Trans. 43, 1808 (2002)CrossRefGoogle Scholar
  6. 6.
    M.L. Huang, L. Wang, C.M.L. Wu, J. Mater. Res. 17, 2897 (2002)CrossRefGoogle Scholar
  7. 7.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, J. Electron. Mater. 31, 921 (2002)CrossRefGoogle Scholar
  8. 8.
    K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002)CrossRefGoogle Scholar
  9. 9.
    Z. Mei, J.W. Morris, J. Electron. Mater. 21, 599 (1992)CrossRefGoogle Scholar
  10. 10.
    X.J. Yang, C.L. Chow, K.J. Lau, Int. J. Fatigue 25, 533 (2003)CrossRefGoogle Scholar
  11. 11.
    M.F. Doerner, W.D. Nix, J. Mater. Res. 1, 601 (1986)CrossRefGoogle Scholar
  12. 12.
    J.S. Field, M.V. Swain, J. Mater. Res. 8, 297 (1993)CrossRefGoogle Scholar
  13. 13.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  14. 14.
    A.C. Fischer-Cripps, Vacuum 58, 569 (2000)CrossRefGoogle Scholar
  15. 15.
    J.W. Elmer, E.D. Specht, M. Kumar, J. Electron. Mater. 39, 273 (2010)CrossRefGoogle Scholar
  16. 16.
    J.Y. Park, C.S. Kang, J.P. Jung, J. Electron. Mater. 28, 1256 (1999)CrossRefGoogle Scholar
  17. 17.
    C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, J. Electron. Mater. 32, 63 (2003)CrossRefGoogle Scholar
  18. 18.
    G.B. Dharma, M.H.A. Shukor, T. Ariga, Mater. Trans. 50, 1135 (2009)CrossRefGoogle Scholar
  19. 19.
    M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, M.N. Islam, B.Y. Wu, J. Electron. Mater. 34, 1115 (2005)CrossRefGoogle Scholar
  20. 20.
    R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, J. Mater. Res. 18, 2251 (2003)CrossRefGoogle Scholar
  21. 21.
    G.Y. Jang, C.S. Huang, L.Y. Hsiao, J.G. Duh, H. Takahashi, J. Electron. Mater. 33, 1118 (2004)CrossRefGoogle Scholar
  22. 22.
    X. Deng, M. Koopman, N. Chawla, Mater. Sci. Eng. A 364, 240 (2004)CrossRefGoogle Scholar
  23. 23.
    L. Xu, J.H.L. Pang, J. Electron. Mater. 35, 2107 (2006)Google Scholar
  24. 24.
    K.M. Kumar, A.A.O. Tay, in Proceedings of the 56th IEEE Electronic Packaging Technology Conference (2004), p. 483Google Scholar
  25. 25.
    American Institute of Physics Handbook, 3rd ed., McGraw-Hill, 1972Google Scholar
  26. 26.
    W.J.M. Tegart, Elements of Mechanical Metallurgy (MacMillan, New York, 1966)Google Scholar
  27. 27.
    P.B. Coates, J.W. Andrews, J. Phys. F Met. Phys. 8(2), 277 (1978)Google Scholar
  28. 28.
    ASTM Metal Handbook, vol. 2, 10th edn, (ASM International, 1995), pp. 2997–3000; 3196–3197Google Scholar
  29. 29.
    J.W. Cuthbertson, J. Inst. Met. 64, 209 (1939)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulRepublic of Korea

Personalised recommendations