Impact of isovalent defect engineering strategies on carbon-related clusters in silicon

  • C. A. Londos
  • E. N. Sgourou
  • A. Chroneos


In electron-irradiated silicon (Si) the formation of oxygen-vacancy pairs (VO or A-centers) is deleterious and for this reason isovalent defect engineering strategies have been proposed to suppress their concentration. Carbon-related clusters such as CiOi and CiCs are also important as they are electrically active and their properties need to be determined. The present study has two aims. The first aim is to review the impact of isovalent doping [germanium (Ge), tin (Sn) and lead (Pb)] on the thermal stability of the CiOi and CiCs pairs in Si by means of infrared (IR) spectroscopy. The second aim is to analyze these results and show that the presence of isovalent dopants in Si reduces the temperature of annealing (Tann) of the CiOi pairs and increases the temperature of annealing of the CiCs pairs. The results are discussed in view of recent experimental and theoretical studies. It is suggested that the change in the thermal stability of the C-related defects is due to the local strains induced in the lattice by the oversized isovalent dopants. It is surmised that these strains have an opposite impact on the Tann of the CiOi and CiCs pairs as a result of their different structures.


Covalent Radius Intrinsic Point Defect Neutral Charge State Oxygen Band Carbon Interstitial Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Prof. I. Yonenaga for the provision of the SnH doped Si sample, Dr V. Neimash for the provision of the Pb and (Pb,Sn) doped Si samples and Prof. V. V. Emtsev for the provision of the Ge doped Si samples.


  1. 1.
    Y. Smimizu, M. Uematsu, K.M. Itoh, Phys. Rev. Lett. 98, 095901 (2007)CrossRefGoogle Scholar
  2. 2.
    G.D. Watkins, J. Appl. Phys. 103, 106106 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Chroneos, J. Appl. Phys. 105, 056101 (2009)CrossRefGoogle Scholar
  4. 4.
    C.A. Londos, E.N. Sgourou, A. Chroneos, V.V. Emtsev, Semicond. Sci. Technol. 26, 105024 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Brelot, J. Charlemagne, Radiat. Eff. 9, 65 (1971)CrossRefGoogle Scholar
  7. 7.
    J. Chen, J. Vanhellemont, E. Simoen, J. Lauwaert, H. Vrielink, J.M. Rafi, H. Ohyama, J. Weber, D. Yang, Phys. Stat. Sol. C 8, 674 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Schmalz, V.V. Emtsev, Appl. Phys. Lett. 65, 1575 (1994)CrossRefGoogle Scholar
  9. 9.
    L.I. Khirunenko, V.I. Shakhovtsov, V.V. Shumov, V.I. Yashnik, Mater. Sci. Forum 196–201, 1381 (1995)CrossRefGoogle Scholar
  10. 10.
    C.A. Londos, A. Andrianakis, V. Emtsev, H. Ohyama, Semicond. Sci. Technol. 24, 075002 (2009)CrossRefGoogle Scholar
  11. 11.
    C.A. Londos, A. Andrianakis, V. Emtsev, H. Ohyama, J. Appl. Phys. 105, 123508 (2009)CrossRefGoogle Scholar
  12. 12.
    C.A. Londos, A. Andrianakis, E.N. Sgourou, V. Emtsev, H. Ohyama, J. Appl. Phys. 107, 093520 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Claeys, E. Simoen, V.P. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, A. Blondeel, P. Clauws, J. Electrochem. Soc. 148, G738 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)CrossRefGoogle Scholar
  15. 15.
    C.A. Londos, D. Aliprantis, E.N. Sgourou, A. Chroneos, P. Pochet, J. Appl. Phys. 111, 123508 (2012)CrossRefGoogle Scholar
  16. 16.
    M.L. David, E. Simoen, C. Clays, V.B. Neimash, M. Kra’sko, A. Kraitchinscii, V. Voytovych, A. Kabaldin, J.F. Barbot, Solid State Phenom. 108–109, 373 (2005)CrossRefGoogle Scholar
  17. 17.
    V.M. Babich, N.P. Baran, K.J.I. Zotov, V.L. Kiritsa, V.B. Koval’chuk, Semiconductors 29, 30 (1995)Google Scholar
  18. 18.
    G. Davies, R.C. Newman, in Handbook in Semiconductors, ed. by S. Mahajan, vol 3 (Elsevier, Amsterdam, 1994), p. 1557Google Scholar
  19. 19.
    G. Ferenczi, C.A. Londos, T. Pavelka, M. Somogyi, A. Martens, J. Appl. Phys. 63, 183 (1988)CrossRefGoogle Scholar
  20. 20.
    S.P. Chappell, R.C. Newman, Semicond. Sci. Technol. 2, 691 (1987)CrossRefGoogle Scholar
  21. 21.
    C.A. Londos, Semicond. Sci. Technol. 5, 645 (1990)CrossRefGoogle Scholar
  22. 22.
    E.V. Lavrov, B. Bech Nielsen, J.R. Byberg, B. Hourahine, R. Jones, S. Öberg, P.R. Briddon, Phys. Rev. B 62, 158 (2000)CrossRefGoogle Scholar
  23. 23.
    G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)CrossRefGoogle Scholar
  24. 24.
    E.V. Lavrov, L. Hoffmann, B. Bech Nielsen, Phys. Rev. B 60, 8081 (1999)CrossRefGoogle Scholar
  25. 25.
    S.D. Brotherton, P. Bradley, J. Appl. Phys. 53, 5720 (1982)CrossRefGoogle Scholar
  26. 26.
    A. Khan, M. Yamaguchi, Y. Ohshita, N. Dharmarasu, K. Araki, T. Abe, H. Itoh, T. Ohshima, M. Imaizumi, S. Matsuda, J. Appl. Phys. 90, 1170 (2001)CrossRefGoogle Scholar
  27. 27.
    K. Murata, Y. Yasutake, K. Nittoh, S. Fukatsu, K. Miki, AIP Adv. 1, 032125 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Chroneos, C.A. Londos, J. Appl. Phys. 107, 093518 (2010)CrossRefGoogle Scholar
  29. 29.
    J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett. 51, 1103 (1987)CrossRefGoogle Scholar
  30. 30.
    P. Leary, R. Jones, S. Öberg, V.J.B. Torres, Phys. Rev. B 55, 2188 (1997)CrossRefGoogle Scholar
  31. 31.
    D.J. Backlund, S.K. Estreicher, Phys. B 401–402, 163 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Docaj, S.K. Estreicher, Phys. B 407, 2981 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Solid State Physics SectionUniversity of AthensAthensGreece
  2. 2.Materials EngineeringThe Open UniversityMilton KeynesUK
  3. 3.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations