Study on the structural, electrical, optical, adhesive properties and stability of Ga-doped ZnO transparent conductive films deposited on polymer substrates at room temperature

  • Li Gong
  • Jianguo Lu
  • Zhizhen Ye


Flexible optoelectronic devices are attractive because of light weight, small volume, flexibility and easy transport. Transparent conductive oxide thin films deposited on polymer substrates could satisfy the flexibility for optoelectronic devices. Ga-doped ZnO (GZO) films have been prepared on polycarbonate substrates by radio frequency magnetron sputtering at room temperature. The dependence of the structural, electrical, optical and adhesive properties for films on the sputtering powers was investigated. We also investigated the stability of the electrical property through doing Hall-effect measurements 18 months later. The lowest sheet resistance was 5.8 Ω/sq. After 18 months, the lowest sheet resistance was 6.5 Ω/sq. The stability of the electrical property is excellent. The average transmittance in the visible region of all the films was as high as 85 %, using air as reference. The good transparency-conducting property, excellent stability and room-temperature deposition on polymeric substrates enable GZO films to be widely used in optoelectronic devices.


Carrier Concentration Sheet Resistance Adhesion Force Hall Mobility Radio Frequency Magnetron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Talent Introduction Foundation of Changsha University of Science and Technology, the Construct Program of the Key Discipline in Hunan province, National Natural Science Foundation of China under Grant No. 51002131.


  1. 1.
    A. Crossay, S. Buecheler, L. Kranz, J. Perrenoud, C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, Sol. Energy Mater. Sol. C 101, 283 (2012)CrossRefGoogle Scholar
  2. 2.
    D. Inamdar, C. Agashe, P. Kadam, S. Mahamuni, Thin Solid Films 520, 3871 (2012)CrossRefGoogle Scholar
  3. 3.
    X. Chen, Q. Lin, J. Ni, D. Zhang, J. Sun, Y. Zhao, X. Geng, Thin Solid Films 520, 1263 (2011)CrossRefGoogle Scholar
  4. 4.
    B.C. Jiao, X.D. Zhang, C.C. Wei, J. Sun, Q. Huang, Y. Zhao, Thin Solid Films 520, 1323 (2011)CrossRefGoogle Scholar
  5. 5.
    X. Liu, W. Bi, Z. Liu, Appl. Surf. Sci. 255, 7942 (2009)CrossRefGoogle Scholar
  6. 6.
    F. Cao, Y. Wang, L. Li, B. Guo, Y. An, Scripta Mater. 61, 231 (2009)CrossRefGoogle Scholar
  7. 7.
    Y.Z. Tsai, N.F. Wang, C.L. Tsai, Mater. Lett. 63, 1621 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Cao, L.P. Zhu, J. Jiang, R. Zhao, Z.Z. Ye, B.H. Zhao, Sol. Energy Mater. Sol. C 95, 894 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Nagamoto, K. Kato, S. Naganawa, T. Kondo, Y. Sato, H. Makino, N. Yamamoto, T. Yamamoto, Thin Solid Films 520, 1411 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Akazawa, Thin Solid Films 520, 2418 (2012)CrossRefGoogle Scholar
  11. 11.
    J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, Opt. Mater. 33, 768 (2011)CrossRefGoogle Scholar
  12. 12.
    K.C. Lai, J.H. Wang, C.H. Lu, F.J. Tsai, C.H. Yeh, M.P. Houng, Sol. Energy Mater. Sol. C 95, 415 (2011)CrossRefGoogle Scholar
  13. 13.
    B.K. Shin, T.I. Lee, J.H. Park, K.I. Park, K.J. Ahn, S.K. Park, W. Lee, J.M. Myoung, Appl. Surf. Sci. 258, 834 (2011)CrossRefGoogle Scholar
  14. 14.
    J.H. Park, K.J. Ahn, S.I. Na, H.K. Kim, Sol. Energy Mater. Sol. C 95, 657 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Gabás, P. Díaz-Carrasco, F. Agulló-Rueda, P. Herrero, A.R. Landa-Cánovas, J.R. Ramos-Barrado, Sol. Energy Mater. Sol. C 95, 2327 (2011)CrossRefGoogle Scholar
  16. 16.
    R.C. Scott, K.D. Leedy, B. Bayraktaroglu, D.C. Look, Y.H. Zhang, J. Cryst. Growth 324, 110 (2011)CrossRefGoogle Scholar
  17. 17.
    S.K. Wang, T.C. Lin, S.R. Jian, J.Y. Juang, J.S.C. Jang, J.Y. Tseng, Appl. Surf. Sci. 258, 1261 (2011)CrossRefGoogle Scholar
  18. 18.
    W.T. Yen, Y.C. Lin, P.C. Yao, J.H. Ke, Y.L. Chen, Appl. Surf. Sci. 258, 3432 (2010)CrossRefGoogle Scholar
  19. 19.
    E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, R. Martins, Sol. Energy Mater. Sol. C 92, 1605 (2008)CrossRefGoogle Scholar
  20. 20.
    Y.Y. Liu, S.Y. Yang, G.X. Wei, H.S. Song, C.F. Cheng, C.S. Xue, Y.Z. Yuan, Surf. Coat. Tech. 205, 3530 (2011)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Zhang, C.G. Bao, Q. Li, S.Q. Ma, S.Z. Hou, J. Mater. Sci.: Mater. Electron. 23, 376 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Gong, J.G. Lu, Z.Z. Ye, Sol. Energy Mater. Sol. Cells C 94, 937 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.S. Kim, S.B. Heo, H.M. Lee, Y.J. Lee, I.S. Kim, M.S. Kang, D.H. Choi, B.H. Lee, M.G. Kim, D. Kim, Appl. Surf. Sci. 258, 3903 (2012)CrossRefGoogle Scholar
  24. 24.
    B.D. Callity, S.R. Stock, Elements of X-ray Diffraction (Addison Wesley, London, 1959), p. 99Google Scholar
  25. 25.
    J.H. Lee, D.J. Lee, D.G. Lim, K.J. Yang, Thin Solid Films 515, 6094 (2007)CrossRefGoogle Scholar
  26. 26.
    B.I. Hwang, K. Park, H.S. Chun, C.H. An, H. Kim, H.J. Lee, Appl. Phys. Lett. 93, 222104 (2008)CrossRefGoogle Scholar
  27. 27.
    X.H. Pan, Z.Z. Ye, Y.J. Zeng, X.Q. Gu, J.S. Li, L.P. Zhu, B.H. Zhao, Y. Che, X.Q. Pan, J. Phys. D Appl. Phys. 40, 4241 (2007)CrossRefGoogle Scholar
  28. 28.
    J.F. Chang, M.H. Hon, Thin Solid Films 386, 79 (2011)CrossRefGoogle Scholar
  29. 29.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  30. 30.
    A.P. Roth, J.B. Webb, D.F. Williams, Phys. Rev. B 25, 7836 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Physics and Electronic ScienceChangsha University of Science and TechnologyChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Silicon Materials, Department of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations