Photoluminescence and photoconductivity studies of ZnO nanoparticles prepared by solid state reaction method

  • Sheo K. Mishra
  • Rajneesh K. Srivastava
  • S. G. Prakash


In the present work, the effect of annealing temperature on the luminescence and photoconductivity properties of ZnO nanoparticles (NPs) has been investigated. The ZnO NPs have been prepared at low temperature by a simple one step solid state reaction method using ZnSO4·7H2O as a starting precursor. X-ray diffraction results show, the prepared samples have a hexagonal wurtzite structure of ZnO NPs. FE-SEM reveals that the prepared ZnO nanoparticles have perfect spherical shape with little agglomeration. UV–visible absorption spectrum of as-prepared ZnO sample shows an absorbance peak at ~372 nm (~3.32 eV), which is blue shifted as compared to bulk ZnO (~386 nm). The annealed sample exhibits red shift of absorption peak. The photoluminescence spectra of as-prepared sample as well as annealed samples show one emission peak in UV region, and violet, blue, blue-green and green emissions in visible region. The sample annealed at 650 °C results in a significant reduction in luminescence as compared to that of the sample annealed at 450 °C. The photoconductivity properties such as voltage dependence of photocurrent, growth and decay of photocurrent as well as wavelength dependence of photocurrent have been studied in detail.


Solid State Reaction Method Visible Emission Trap Depth Space Charge Limited Current Photoconductivity Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors, Dr. Rajneesh K Srivastava, is thankful to UGC for its support in form of a project grant (No. 37-395/2009 (SR)). The authors are also thankful to Prof. A. C. Pandey for providing XRD and PL measurements at Nanotechnology Application Centre, University of Allahabad. We are also thankful to Saha Institute of Nuclear Physics (SINP), Kolkata for SEM characterization facility. Dr. Sheo K. Mishra is grateful to SINP, Kolkata for providing financial assistance under Postdoctoral Fellowship during the analysis and revision of this work.


  1. 1.
    Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, D. Bagnall, T. Yao, Mater. Sci. Eng. B 75, 190 (2000)CrossRefGoogle Scholar
  3. 3.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  4. 4.
    D.H. Zhang, Z.Y. Xue, Q.P. Wang, J. Phys. D Appl. Phys. 35, 2837 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Hayashi, A. Ishizaka, M. Haemori, H. Koinuma, Appl. Phys. Lett. 82, 1365 (2003)CrossRefGoogle Scholar
  6. 6.
    H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. 93, 3963 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72, 4203 (1992)CrossRefGoogle Scholar
  9. 9.
    T. Okamura, Y. Seki, S. Nagakary, H. Okushi, Jpn. J. Appl. Phys. 31, L762 (1992)CrossRefGoogle Scholar
  10. 10.
    J. Aranovich, A. Ortiz, R.H. Bube, J. Vac. Technol. 16, 994 (1979)CrossRefGoogle Scholar
  11. 11.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opt. Electron. Rev. 18, 467–473 (2010)CrossRefGoogle Scholar
  12. 12.
    X.R. Ye, D.Z. Jia, J.Q. Yu, X.Q. Xin, Z.L. Xue, Adv. Mater. 11, 941 (1999)CrossRefGoogle Scholar
  13. 13.
    C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14, 667 (2003)CrossRefGoogle Scholar
  14. 14.
    V. Prasad, C. D’Souza, D. Yadav, A.J. Shaikh, N. Vigneshwaran, Spectrochim. Acta A 65, 173 (2006)CrossRefGoogle Scholar
  15. 15.
    Z.P. Sun, L. Liu, L. Zhang, D.Z. Jia, Nanotechnology 17, 2266 (2006)CrossRefGoogle Scholar
  16. 16.
    H. Zhang, G. Chen, G. Yang, J. Zhang, X. Lu, J. Mater. Sci. Mater. Electron. 18, 381 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, Y. Zhou, Appl. Phys. A 92, 275 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  19. 19.
    X.M. Fan, J.S. Lian, L. Zhao, Y. Liu, Appl. Surf. Sci. 252, 420–424 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Wang, L. Gao, J. Cryst. Growth 262, 290–294 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43, 2602–2606 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Dingle, Phys. Rev. Lett. 23, 579–581 (1969)CrossRefGoogle Scholar
  23. 23.
    Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)CrossRefGoogle Scholar
  24. 24.
    J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Nano Lett. 6, 1887 (2006)CrossRefGoogle Scholar
  25. 25.
    R. Ghosh, B. Mallik, S. Fujihara, D. Basak, Chem. Phys. Lett. 403, 415–419 (2005)CrossRefGoogle Scholar
  26. 26.
    S.V. Bhat, S.R.C. Vivekchand, A. Govindraj, C.N.R. Rao, Solid State Comm. 149, 510–514 (2009)CrossRefGoogle Scholar
  27. 27.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Electron. Mater. Lett. 7, 31–38 (2011)CrossRefGoogle Scholar
  28. 28.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley and Sons, Inc, Singapore, 1996)Google Scholar
  29. 29.
    A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, J. Alloy. Comp. 509, 8433–8440 (2011)CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, S.R. Stock, Elementary of X-ray Diffraction, 3rd edn. (Englewood Cliffs, Prentice-Hall, 2001)Google Scholar
  31. 31.
    Q. Jiang, L.H. Liang, D.S. Zhao, J. Phys. Chem. B 105, 6275–6277 (2001)CrossRefGoogle Scholar
  32. 32.
    R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta Part A 79, 1605–1612 (2011)CrossRefGoogle Scholar
  33. 33.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1971)Google Scholar
  34. 34.
    S.B. Quadri, E.F. Kelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Grag, B.R. Ratna, Phys. Rev. B. 60, 9191 (1999)CrossRefGoogle Scholar
  35. 35.
    I.W. Kim, S.J. Doh, C.C. Kim, J.H.O. Je, J. Tashiro, M. Yoshimoto, Appl. Surf. Sci. 241, 179–182 (2005)CrossRefGoogle Scholar
  36. 36.
    N. Singh, R.M. Mehra, A. Kapoor, J. Nano-Electron. Phys. 3, 132–139 (2011)Google Scholar
  37. 37.
    V. Noack, A. Eychmuller, Chem. Mater. 14, 1411 (2002)CrossRefGoogle Scholar
  38. 38.
    S. Wei, J. Lian, H. Wu, Mater. Charact. 61, 1239–1244 (2010)CrossRefGoogle Scholar
  39. 39.
    S.A.M. Lima, F.A. Sigoli, M. Jafelicci Jr, M.R. Davolos, Int. J. Inorg. Mater. 3, 749–754 (2001)CrossRefGoogle Scholar
  40. 40.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622–624 (2002)CrossRefGoogle Scholar
  41. 41.
    V.A.L. Roy, A.B. Djurisic, W.K. Chan, J. Gao, H.F. Lui, C. Surya, Appl. Phys. Lett. 83, 141–143 (2003)CrossRefGoogle Scholar
  42. 42.
    Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, J. Appl. Phys. 94, 354–358 (2003)CrossRefGoogle Scholar
  43. 43.
    A. van Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123–128 (2000)CrossRefGoogle Scholar
  44. 44.
    D.C. Reynolds, D.C. Look, B. Jogai, J. Appl. Phys. 89, 6189–6191 (2001)CrossRefGoogle Scholar
  45. 45.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)CrossRefGoogle Scholar
  46. 46.
    Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Physica E 35, 199–202 (2006)CrossRefGoogle Scholar
  47. 47.
    P.K.C. Pillai, N. Shroff, N.N. Kumar, A.K. Tripathi, Phys. Rev. B 32, 8228–8233 (1985)CrossRefGoogle Scholar
  48. 48.
    S. Devi, S.G. Prakash, Premana-J. Phys. 39, 145–155 (1992)CrossRefGoogle Scholar
  49. 49.
    R.W. Smith, A. Rose, Phys. Rev. 97, 1531–1537 (1955)CrossRefGoogle Scholar
  50. 50.
    R. Ghosh, B. Mallik, D. Basak, Appl. Phys. A-Mater. Sci. Process. 81, 1281–1284 (2005)CrossRefGoogle Scholar
  51. 51.
    D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256, 73–77 (2003)CrossRefGoogle Scholar
  52. 52.
    Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya, Jpn. J. Appl. Phys. Part 1-Regul Papers Brief Comm Rev Papers 33, 6611–6615 (1994)Google Scholar
  53. 53.
    T.E. Murphy, K. Moazzami, J.D. Phillips, J. Electron. Mater. 35, 543–549 (2006)CrossRefGoogle Scholar
  54. 54.
    D.H. Zhang, D.E. Brodie, Thin Solid Films 261, 334–339 (1995)CrossRefGoogle Scholar
  55. 55.
    Q.H. Li, T. Gao, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 86, 123117–123119 (2005)CrossRefGoogle Scholar
  56. 56.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003–1009 (2007)CrossRefGoogle Scholar
  57. 57.
    L. Luo, Y.F. Zhang, S.S. Mao, L.W. Lin, Sens. Actuator A-Phys. 127, 201–206 (2006)CrossRefGoogle Scholar
  58. 58.
    J.B.K. Law, J.T.L. Thong, Appl. Phys. Lett. 88, 113114–113116 (2006)CrossRefGoogle Scholar
  59. 59.
    R. Ghosh, D. Basak, J. Appl. Phys. 101, 113111 (2007)CrossRefGoogle Scholar
  60. 60.
    H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158–160 (2002)CrossRefGoogle Scholar
  61. 61.
    Y.W. Heo, B.S. Kang, L.C. Tien, D.P. Norton, F. Ren, J.R. La Roche, S.J. Pearton, Appl. Phys. A-Mater. Sci. Process. 80, 497–499 (2005)CrossRefGoogle Scholar
  62. 62.
    Z.M. Liao, K.J. Liu, J.M. Zhang, J. Xu, D.P. Yu, Phys. Lett. A 367, 207–210 (2007)CrossRefGoogle Scholar
  63. 63.
    R.H. Bube, Photoconductivity of Solids (John Wiley, New York, 1967), p. 404Google Scholar
  64. 64.
    J.F. Randall, J.H.F. Wilkins, Proc. Royal Soc. A 184, 366–389 (1945)Google Scholar
  65. 65.
    R.W.I. de Boer, A.F. Morpurgo, Phys. Rev. B 72, 073207 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sheo K. Mishra
    • 1
  • Rajneesh K. Srivastava
    • 1
  • S. G. Prakash
    • 1
  1. 1.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations