Skip to main content
Log in

Photoluminescence and photoconductivity studies of ZnO nanoparticles prepared by solid state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the effect of annealing temperature on the luminescence and photoconductivity properties of ZnO nanoparticles (NPs) has been investigated. The ZnO NPs have been prepared at low temperature by a simple one step solid state reaction method using ZnSO4·7H2O as a starting precursor. X-ray diffraction results show, the prepared samples have a hexagonal wurtzite structure of ZnO NPs. FE-SEM reveals that the prepared ZnO nanoparticles have perfect spherical shape with little agglomeration. UV–visible absorption spectrum of as-prepared ZnO sample shows an absorbance peak at ~372 nm (~3.32 eV), which is blue shifted as compared to bulk ZnO (~386 nm). The annealed sample exhibits red shift of absorption peak. The photoluminescence spectra of as-prepared sample as well as annealed samples show one emission peak in UV region, and violet, blue, blue-green and green emissions in visible region. The sample annealed at 650 °C results in a significant reduction in luminescence as compared to that of the sample annealed at 450 °C. The photoconductivity properties such as voltage dependence of photocurrent, growth and decay of photocurrent as well as wavelength dependence of photocurrent have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  CAS  Google Scholar 

  2. Y. Chen, D. Bagnall, T. Yao, Mater. Sci. Eng. B 75, 190 (2000)

    Article  Google Scholar 

  3. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  4. D.H. Zhang, Z.Y. Xue, Q.P. Wang, J. Phys. D Appl. Phys. 35, 2837 (2002)

    Article  CAS  Google Scholar 

  5. H. Hayashi, A. Ishizaka, M. Haemori, H. Koinuma, Appl. Phys. Lett. 82, 1365 (2003)

    Article  CAS  Google Scholar 

  6. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003)

    Article  CAS  Google Scholar 

  7. P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. 93, 3963 (2003)

    Article  CAS  Google Scholar 

  8. Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72, 4203 (1992)

    Article  CAS  Google Scholar 

  9. T. Okamura, Y. Seki, S. Nagakary, H. Okushi, Jpn. J. Appl. Phys. 31, L762 (1992)

    Article  CAS  Google Scholar 

  10. J. Aranovich, A. Ortiz, R.H. Bube, J. Vac. Technol. 16, 994 (1979)

    Article  CAS  Google Scholar 

  11. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opt. Electron. Rev. 18, 467–473 (2010)

    Article  CAS  Google Scholar 

  12. X.R. Ye, D.Z. Jia, J.Q. Yu, X.Q. Xin, Z.L. Xue, Adv. Mater. 11, 941 (1999)

    Article  CAS  Google Scholar 

  13. C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14, 667 (2003)

    Article  CAS  Google Scholar 

  14. V. Prasad, C. D’Souza, D. Yadav, A.J. Shaikh, N. Vigneshwaran, Spectrochim. Acta A 65, 173 (2006)

    Article  Google Scholar 

  15. Z.P. Sun, L. Liu, L. Zhang, D.Z. Jia, Nanotechnology 17, 2266 (2006)

    Article  CAS  Google Scholar 

  16. H. Zhang, G. Chen, G. Yang, J. Zhang, X. Lu, J. Mater. Sci. Mater. Electron. 18, 381 (2007)

    Article  Google Scholar 

  17. Y. Zhu, Y. Zhou, Appl. Phys. A 92, 275 (2008)

    Article  CAS  Google Scholar 

  18. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  19. X.M. Fan, J.S. Lian, L. Zhao, Y. Liu, Appl. Surf. Sci. 252, 420–424 (2005)

    Article  CAS  Google Scholar 

  20. J. Wang, L. Gao, J. Cryst. Growth 262, 290–294 (2004)

    Article  CAS  Google Scholar 

  21. T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43, 2602–2606 (2004)

    Article  CAS  Google Scholar 

  22. R. Dingle, Phys. Rev. Lett. 23, 579–581 (1969)

    Article  CAS  Google Scholar 

  23. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  Google Scholar 

  24. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Nano Lett. 6, 1887 (2006)

    Article  CAS  Google Scholar 

  25. R. Ghosh, B. Mallik, S. Fujihara, D. Basak, Chem. Phys. Lett. 403, 415–419 (2005)

    Article  CAS  Google Scholar 

  26. S.V. Bhat, S.R.C. Vivekchand, A. Govindraj, C.N.R. Rao, Solid State Comm. 149, 510–514 (2009)

    Article  Google Scholar 

  27. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Electron. Mater. Lett. 7, 31–38 (2011)

    Article  CAS  Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley and Sons, Inc, Singapore, 1996)

    Google Scholar 

  29. A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, J. Alloy. Comp. 509, 8433–8440 (2011)

    Article  CAS  Google Scholar 

  30. B.D. Cullity, S.R. Stock, Elementary of X-ray Diffraction, 3rd edn. (Englewood Cliffs, Prentice-Hall, 2001)

    Google Scholar 

  31. Q. Jiang, L.H. Liang, D.S. Zhao, J. Phys. Chem. B 105, 6275–6277 (2001)

    Article  CAS  Google Scholar 

  32. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta Part A 79, 1605–1612 (2011)

    Article  CAS  Google Scholar 

  33. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1971)

    Google Scholar 

  34. S.B. Quadri, E.F. Kelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Grag, B.R. Ratna, Phys. Rev. B. 60, 9191 (1999)

    Article  Google Scholar 

  35. I.W. Kim, S.J. Doh, C.C. Kim, J.H.O. Je, J. Tashiro, M. Yoshimoto, Appl. Surf. Sci. 241, 179–182 (2005)

    Article  CAS  Google Scholar 

  36. N. Singh, R.M. Mehra, A. Kapoor, J. Nano-Electron. Phys. 3, 132–139 (2011)

    Google Scholar 

  37. V. Noack, A. Eychmuller, Chem. Mater. 14, 1411 (2002)

    Article  CAS  Google Scholar 

  38. S. Wei, J. Lian, H. Wu, Mater. Charact. 61, 1239–1244 (2010)

    Article  CAS  Google Scholar 

  39. S.A.M. Lima, F.A. Sigoli, M. Jafelicci Jr, M.R. Davolos, Int. J. Inorg. Mater. 3, 749–754 (2001)

    Article  CAS  Google Scholar 

  40. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622–624 (2002)

    Article  CAS  Google Scholar 

  41. V.A.L. Roy, A.B. Djurisic, W.K. Chan, J. Gao, H.F. Lui, C. Surya, Appl. Phys. Lett. 83, 141–143 (2003)

    Article  CAS  Google Scholar 

  42. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, J. Appl. Phys. 94, 354–358 (2003)

    Article  CAS  Google Scholar 

  43. A. van Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123–128 (2000)

    Article  Google Scholar 

  44. D.C. Reynolds, D.C. Look, B. Jogai, J. Appl. Phys. 89, 6189–6191 (2001)

    Article  CAS  Google Scholar 

  45. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    Article  CAS  Google Scholar 

  46. Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Physica E 35, 199–202 (2006)

    Article  CAS  Google Scholar 

  47. P.K.C. Pillai, N. Shroff, N.N. Kumar, A.K. Tripathi, Phys. Rev. B 32, 8228–8233 (1985)

    Article  CAS  Google Scholar 

  48. S. Devi, S.G. Prakash, Premana-J. Phys. 39, 145–155 (1992)

    Article  CAS  Google Scholar 

  49. R.W. Smith, A. Rose, Phys. Rev. 97, 1531–1537 (1955)

    Article  CAS  Google Scholar 

  50. R. Ghosh, B. Mallik, D. Basak, Appl. Phys. A-Mater. Sci. Process. 81, 1281–1284 (2005)

    Article  CAS  Google Scholar 

  51. D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256, 73–77 (2003)

    Article  CAS  Google Scholar 

  52. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya, Jpn. J. Appl. Phys. Part 1-Regul Papers Brief Comm Rev Papers 33, 6611–6615 (1994)

    Google Scholar 

  53. T.E. Murphy, K. Moazzami, J.D. Phillips, J. Electron. Mater. 35, 543–549 (2006)

    Article  CAS  Google Scholar 

  54. D.H. Zhang, D.E. Brodie, Thin Solid Films 261, 334–339 (1995)

    Article  CAS  Google Scholar 

  55. Q.H. Li, T. Gao, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 86, 123117–123119 (2005)

    Article  Google Scholar 

  56. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003–1009 (2007)

    Article  CAS  Google Scholar 

  57. L. Luo, Y.F. Zhang, S.S. Mao, L.W. Lin, Sens. Actuator A-Phys. 127, 201–206 (2006)

    Article  Google Scholar 

  58. J.B.K. Law, J.T.L. Thong, Appl. Phys. Lett. 88, 113114–113116 (2006)

    Article  Google Scholar 

  59. R. Ghosh, D. Basak, J. Appl. Phys. 101, 113111 (2007)

    Article  Google Scholar 

  60. H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158–160 (2002)

    Article  CAS  Google Scholar 

  61. Y.W. Heo, B.S. Kang, L.C. Tien, D.P. Norton, F. Ren, J.R. La Roche, S.J. Pearton, Appl. Phys. A-Mater. Sci. Process. 80, 497–499 (2005)

    Article  CAS  Google Scholar 

  62. Z.M. Liao, K.J. Liu, J.M. Zhang, J. Xu, D.P. Yu, Phys. Lett. A 367, 207–210 (2007)

    Article  CAS  Google Scholar 

  63. R.H. Bube, Photoconductivity of Solids (John Wiley, New York, 1967), p. 404

    Google Scholar 

  64. J.F. Randall, J.H.F. Wilkins, Proc. Royal Soc. A 184, 366–389 (1945)

    Google Scholar 

  65. R.W.I. de Boer, A.F. Morpurgo, Phys. Rev. B 72, 073207 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Dr. Rajneesh K Srivastava, is thankful to UGC for its support in form of a project grant (No. 37-395/2009 (SR)). The authors are also thankful to Prof. A. C. Pandey for providing XRD and PL measurements at Nanotechnology Application Centre, University of Allahabad. We are also thankful to Saha Institute of Nuclear Physics (SINP), Kolkata for SEM characterization facility. Dr. Sheo K. Mishra is grateful to SINP, Kolkata for providing financial assistance under Postdoctoral Fellowship during the analysis and revision of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Srivastava, R.K. & Prakash, S.G. Photoluminescence and photoconductivity studies of ZnO nanoparticles prepared by solid state reaction method. J Mater Sci: Mater Electron 24, 125–134 (2013). https://doi.org/10.1007/s10854-012-0950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0950-z

Keywords

Navigation