High quality ZnO:Al thin films deposited by using initial sputtering condition

  • Deok Kyu Kim
  • Hong Bae Kim


High quality ZnO:Al (AZO) thin films sputtered at room temperature were deposited under a various initial pressures and its properties were investigated. With decreasing initial pressures, the crystallinity and sheet resistance of AZO thin films were improved and decreased, respectively. According to the composition results with the initial pressure, the low initial pressure promoted stoichiometric composition and increased Al composition in AZO thin films, resulting in improvement of crystallinity and increase of carrier concentration. These phenomena were attributed to reduction of residual gases with decreasing initial pressure. All samples exhibited highly transparent over 80 % at visible wavelength range (400–800 nm). In AZO thin films deposited at room temperature, the initial pressure is known to be a critical factor to obtain a high-quality thin film.


Carrier Concentration Sheet Resistance Initial Pressure Atomic Layer Deposition Transparent Conducting Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Li, J. Xu, Q. Xu, G. Fang, J. Alloys Compd. 542, 151 (2012)CrossRefGoogle Scholar
  2. 2.
    C.M. Lee, J.W. Kang, H.W. Kim, J. Korean Phys. Soc. 56, 576 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Wang, X. Zeng, D. Huang, Q. Li, J. Mater. Sci. Mater. Electron. 23, 1580 (2012)CrossRefGoogle Scholar
  4. 4.
    B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, D.W. Zeng, C.S. Xie, Thin Solid Films 520, 6963 (2012)CrossRefGoogle Scholar
  5. 5.
    D.K. Kim, H.B. Kim, J. Alloys Compd. 509, 421 (2011)CrossRefGoogle Scholar
  6. 6.
    M.Y. Zhang, G.J. Cheng, Appl. Phys. Lett. 99, 051904 (2011)CrossRefGoogle Scholar
  7. 7.
    B.H. Kong, M.K. Choi, H.K. Cho, J.H. Kim, S. Baek, J.H. Lee, Electrochem. Solid State Lett. 13, K12 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Gondoni, M. Ghidelli, F. Di Fonzo, V. Russo, P. Bruno, J. Martí-Rujas, C.E. Bottani, A. Li Bassi, C.S. Casari, Thin Solid Films 520, 4707 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, Sol. Energy 86, 1306 (2012)CrossRefGoogle Scholar
  10. 10.
    J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, J.M. Myoung, Solid State Electron. 54, 1447 (2010)CrossRefGoogle Scholar
  11. 11.
    B.S. Chun, H.C. Wu, M. Abid, I.C. Chu, S. Serrano-Guisan, I.V. Shvets, D.S. Choi, Appl. Phys. Lett. 97, 082109 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, Y.Q. Chen, Y.C. Wu, M.J. Wang, G.J. Fang, C.Q. He, S.J. Wang, Appl. Sur. Sci. 255, 9279 (2009)CrossRefGoogle Scholar
  13. 13.
    JCPDS #46-1212Google Scholar
  14. 14.
    M. Poppeller, R. Abermann, Thin Solid Films 311, 310 (1997)CrossRefGoogle Scholar
  15. 15.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978), p. 102Google Scholar
  16. 16.
    C.V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000)CrossRefGoogle Scholar
  17. 17.
    M.G. Kana, E. Centrioni, D. Iencinella, C. Summmonte, Thin Solid Films 500, 203 (2006)CrossRefGoogle Scholar
  18. 18.
    X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B 388, 145 (2007)CrossRefGoogle Scholar
  19. 19.
    F. Yoshizaki, T. Kingetsu, Thin Solid Films 239, 229 (1994)CrossRefGoogle Scholar
  20. 20.
    Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Mater. Sci. Eng. C 28, 613 (2008)CrossRefGoogle Scholar
  21. 21.
    P.K. Shukla, A. Srivastava, A. Srivastava, K.C. Dubey, J. Crystal Growth 294, 427 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Advanced Development GroupSamsung Electronics Co. Ltd.YonginKorea
  2. 2.Division of Electronics and Information EngineeringCheongju UniversityCheongjuKorea

Personalised recommendations