Morphology-controllable synthesis of CuO micro-shuttles for photocatalytic activity

  • Youcun Chen
  • Xiaohui Tao
  • Yulin Min
  • Fangcai Zheng


In this article, morphology-controllable synthesis of CuO micro-shuttles has been achieved by a solvothermal process in a mixed solvent of water and ethanol. Uniform CuO crystals with novel structures can be fabricated by tuning the volume ratio of water and ethanol. The as-synthesized samples were characterized by the X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. The photocatalytic activities of the products were examined by measuring the photodegradation of methyl orange solution under ultraviolet radiation. The results show that the as-synthesized products display an excellent photocatalytic activity, which may be aroused from their particular morphologies and specific surface area.


Photocatalytic Activity Methyl Orange Copper Oxide Copper Acetate Methyl Orange Solution 



The present work was supported by the special funding support from Natural Science Foundation of Anhui Province (No. KJ2010ZD07, NO. KJ2008B172) and the National Science Foundation of China (NSFC) (Grants nos. 21271010 and 20871005).


  1. 1.
    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 3114 (2005)CrossRefGoogle Scholar
  2. 2.
    J.J. Wu, Y.L. Lee, H.H. Chiang, D.K.P. Wong, J. Phys. Chem. B 110, 18108 (2006)CrossRefGoogle Scholar
  3. 3.
    H. Li, R. Liu, R.X. Zhao, Y.F. Zheng, W.X. Chen, Z.D. Xu, Cryst. Growth Des. 6, 2795 (2006)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, X.Y. Chen, Y.X. Zhou, G.B. Zhang, S.H. Yu, J. Phys. Chem. C 111, 3927 (2007)CrossRefGoogle Scholar
  5. 5.
    S.F. Zheng, J.S. Hu, L.S. Zhong, L.J. Wan, W.G. Song, J. Phys. Chem. C 111, 11174 (2007)CrossRefGoogle Scholar
  6. 6.
    X. Wang, L. Li, Y.G. Zhang, S.T. Wang, Z.D. Zhang, L.F. Fei, Y.T. Qian, Cryst. Growth Des. 6, 2163 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, D. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, J. Phys. Chem. B 108, 3955 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Frietsch, F. Zudock, J. Goschnick, M. Bruns, Sens. Actuators, B 65, 379 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Sens. Actuators, B 49, 121 (1998)CrossRefGoogle Scholar
  10. 10.
    K. Kounmoto, H. Koduka, W.S. Seo, Mater. Chem. 11, 251 (2001)CrossRefGoogle Scholar
  11. 11.
    K.V.R. Chary, G.V. Sagar, D. Naresh, K.K. Seela, B. Sridhar, J. Phys. Chem. B 109, 9437 (2005)CrossRefGoogle Scholar
  12. 12.
    W.X. Zhang, X.G. Wen, S.H. Yang, Inorg. Chem. 42, 5005 (2003)CrossRefGoogle Scholar
  13. 13.
    X.G. Wen, W.X. Zhang, S.H. Yang, Langmuir 19, 5898 (2003)CrossRefGoogle Scholar
  14. 14.
    Z.H. Yang, J. Xu, W.X. Zhang, A.P. Liu, S.P. Tang, Solid State Chem. 180, 1391 (2007)Google Scholar
  15. 15.
    C.L. Carnes, J. Stipp, K.J. Klabunde, Langmuir 18, 1352 (2002)CrossRefGoogle Scholar
  16. 16.
    Z.S. Hong, Y. Cao, J.F. Deng, Mater. Lett. 5, 34 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, Crystal. Growth. 244, 88 (2002)CrossRefGoogle Scholar
  18. 18.
    Y. Chang, J.J. Teo, H.C. Zeng, Langmuir 21, 1074 (2005)CrossRefGoogle Scholar
  19. 19.
    R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12, 2301 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Ghosh, E.V. Sampathkumaran, C.N.R. Rao, Chem. Mater. 17, 2348 (2005)CrossRefGoogle Scholar
  21. 21.
    H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, Y.D. Li, Angew. Chem. Int. Ed. 44, 2782 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Youcun Chen
    • 1
    • 2
  • Xiaohui Tao
    • 1
    • 2
  • Yulin Min
    • 1
    • 2
  • Fangcai Zheng
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringAnqing Normal CollegeAnqingPeople’s Republic of China
  2. 2.Anhui Provincial Laboratory of Optoelectronic and Magnetism Functional MaterialsAnqing Normal UniversityAnqingPeople’s Republic of China

Personalised recommendations