Advertisement

Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics

  • Xiaomei Xue
  • Hongtao Yu
  • Guangliang Xu
Article

Abstract

The phase composition and microwave dielectric properties of Mg-excess MgTiO3 (Mg/Ti = 1, 1.02, 1.04, 1.05, 1.07) ceramics prepared via the conventional solid-state reaction route were investigated. A slight deviation from stoichiometry does not practically affect the relative permittivity and temperature coefficient of resonant frequency of the specimen. However, the Q f value is very sensitive to the composition and it shows a non-linear variation corresponding to a relative amount of Mg. A very high Q f can be achieved for specimen with single MgTiO3 phase, which can be obtained within the suitable composition. As the increasing of Mg content, the MgTi2O5 phase which was derived from Mg/Ti = 1 was disappeared, and when it exceeded 1.02, the phase of Mg2TiO4 emerged. Along with the augmentation of Mg/Ti, the bulk density and Q f showed an initial increase, followed by a decrease, but εr had been declining. The specimen with single MgTiO3 phase was obtained at the level of Mg/Ti = 1.02. A high Q f of 357,400 GHz (at 10 GHz) together with an εr = 17 and τ f  = −51 ppm/°C for MgTiO3 ceramics (Mg/Ti = 1.02) were obtained at 1,390 °C sintered for 4 h.

Keywords

Resonant Frequency Dielectric Loss Microwave Dielectric Property Grain Morphology MgCO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Ph. D. fund (No. 09zx7104) of Southwest University of Science and Technology.

References

  1. 1.
    Y.M. Miao, Q.L. Zhang, H. Yang et al., J. Mater. Sci. Eng. 128(13), 103 (2006)Google Scholar
  2. 2.
    C.C. Cheng, T.E. Hsieh, I.N. Lin, J. Eur. Ceram. Soc. 23, 2553 (2003)CrossRefGoogle Scholar
  3. 3.
    R.Z. Chen, A. Cui, X. Wang, L. Li, B. Mater, Sci. Eng. 99, 302 (2003)CrossRefGoogle Scholar
  4. 4.
    C.L. Huang, J.J. Wang, Y.P. Chang, J. Am. Ceram. Soc. 90, 858 (2007)CrossRefGoogle Scholar
  5. 5.
    C.L. Huang, C.L. Pan, J.F. Hsu, J. Mater. Res. Bull. 37(15), 2483 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Sreedhar, N.R. Pavaskar, J. Mater. Lett. 53, 452 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Liao, M. Senna, J. Mater. Res. Bull. 30(4), 385 (1995)CrossRefGoogle Scholar
  8. 8.
    V.M. Ferreir, I.L. Baptista, J. Am. Ceram. Soc. 79(6), 1697 (1996)CrossRefGoogle Scholar
  9. 9.
    W.W. Cho, K. Kakimoto, H. Ohsato, J. Mater. Sci. Eng. 121(12), 48 (2005)Google Scholar
  10. 10.
    I.R. Abothu, A.V. Prasada, S. Komarneni, J. Mater. Lett. 38(3), 186 (1999)CrossRefGoogle Scholar
  11. 11.
    A.B. Gaikwad, S.C. Navale, V. Samuel et al., J. Mater. Res. Bull. 41(2), 347 (2006)CrossRefGoogle Scholar
  12. 12.
    B.W. Hakki, P.D. Coleman, J. IEEE Trans. Microwave Theory Tech. 8(4), 402 (2010)CrossRefGoogle Scholar
  13. 13.
    B.A. Wechsler, R.B. Von Dreele, B. Acta Crystallogr. 45, 542 (1989)CrossRefGoogle Scholar
  14. 14.
    H.K. Shin, H. Shin, S.Y. Cho, K.S. Hong, J. Am. Ceram. Soc. 88(9), 2461 (2005)CrossRefGoogle Scholar
  15. 15.
    C.F. Shih, W.M. Li, K.S. Tung, J. Am. Ceram. Soc. 93, 2448 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Belous, O. Ovchar, D. Durilin, J. Am. Ceram. Soc. 89(11), 3441 (2006)CrossRefGoogle Scholar
  17. 17.
    E.S. Kim, C.J. Jeon, J. Eur. Ceram. Soc. 30, 341 (2010)CrossRefGoogle Scholar
  18. 18.
    F.T. Ching, J. Alloys Compd. 509, 9447 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Feteira, D.C. Sinclair, M.T. Lanagan, J. Mater. Res. 20, 2391 (2005)CrossRefGoogle Scholar
  20. 20.
    J.I. Yang, S. Nahm, C.H. Choi, J. Am. Ceram. Soc. 85, 165 (2002)CrossRefGoogle Scholar
  21. 21.
    J.D. Breeze, J.M. Perkins, D.W. McComb, J. Am. Ceram. Soc. 92, 671 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional MaterialsSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations