Advertisement

Pressure infiltration of boron nitride preforms with molten aluminum for low density heat sink materials

  • Rongqi Li
  • Fang Peng
  • Junwei Guan
  • Xiaozhi Yan
  • Shenzhuo Liu
  • Wenkai Zhang
  • Xiaoling Zhou
Article

Abstract

Cubic boron nitride (cBN) has outstanding mechanical and thermal properties. The previous research focused on mechanical properties, to data, the thermal property of cBN has rarely been reported. In this work, a wide range of aluminum/cubic boron nitride (Al/cBN) composites were fabricated by pressure infiltration at 5.0 GPa and 960–1600 °C. The microstructure, phase composition, thermal conductivity and coefficient of thermal expansion of the Al/cBN composites were investigated. The results showed that a maximum thermal conductivity of 266 W/mK and the coefficient of thermal expansion of 4–6 × 10−6 K−1 which matches well to semiconductors, indicating that the Al/cBN composites are promised heat sink materials of high efficiency for the wide band gap semiconductors.

Keywords

Boron Nitride High Thermal Conductivity Polycrystalline Cubic Boron Nitride Interfacial Bonding Strength Pressure Infiltration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Schubert, Ł. Ciupin’ski, W. Zielin’ski, Scr. Mater. 58, 263 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Yoshida, H. Morigami, Microelectron. Reliab. 44, 303 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Xia, Y.Q. Song, C.G. Lin, Trans. Nonferr. Met. Soc. Chin. 19, 1161 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Chu, Z. Liu, C. Jia, J. Alloys Compd. 490, 453 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.-L. Chen, T.-F. Young, Diam. Relat. Mater. 18, 283 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Feng, J.K. Yu, W. Tan, Mater. Chem. Phys. 124, 851 (2010)CrossRefGoogle Scholar
  7. 7.
    A. McKie, J. Winzer, I. Sigalas, Ceram. Int. 37, 1 (2011)CrossRefGoogle Scholar
  8. 8.
    X.-Z. Rong, T. Yano, J. Mater. Sci. 39, 4705 (2004)CrossRefGoogle Scholar
  9. 9.
    K. Chu, C.-c. Jia, X.-b. Liang, Int. J. Miner. Metall. Mater. 17, 234 (2010)CrossRefGoogle Scholar
  10. 10.
    W. Guo, X. Jia, J. Shang, J. Cryst. Growth 312, 3544 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Li, S. Li, R. Lv, J. Mater. Res. 23, 2366 (2008)CrossRefGoogle Scholar
  12. 12.
    P.F. Wang, Zh.H. Li, Y.M. Zhu, Solid State Sci. 32, 1 (2011)Google Scholar
  13. 13.
    H.S.L. Sithebe, D. McLachlan, I. Sigalas, Ceram. Int. 34, 1367 (2008)CrossRefGoogle Scholar
  14. 14.
    W.-T. Hong, N.-H. Tai, Diam. Relat. Mater. 17, 1577 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rongqi Li
    • 1
  • Fang Peng
    • 1
  • Junwei Guan
    • 1
  • Xiaozhi Yan
    • 1
  • Shenzhuo Liu
    • 1
  • Wenkai Zhang
    • 1
  • Xiaoling Zhou
    • 1
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations