Low field ac study of PZT/PVDF nano composites



Composites of nanocrystalline Pb0.96Sr0.04(Zr0.53,Ti0.47)O3 (PZT) and α-phase PVDF have been developed using solution casting technique. Characterization of the composites has been done using XRD, FEGSEM, DSC and impedance analysis. XRD and FEGSEM determined the size range of PZT as 22–40 nm. XRD shows the successful incorporation of PZT into PVDF matrix and also confirms that no new phase is developed. DSC of the nanocomposites showed decrease in crystallinity with increasing PZT content. Broadband impedance analysis has been carried out to study the effect of the addition of PZT on the low field ac electrical properties of PVDF. Room temperature dielectric permittivity measurement of the PZT-PVDF composites at 1 kHz determined using impedance analyzer gives values of permittivity 2–4 times higher as compared to neat PVDF. It is found that dielectric permittivity values at the lower frequency edge are affected by space charges while the higher frequencies show the influence of relaxation effects in the materials. It is suggested that PZT/PVDF composites are the preferred materials for high temperature and high frequency applications. However, for low frequency use at higher temperatures, these composites do not offer any specific advantage. At room temperature, the composites are again the better choice in the 1 mHz–1 MHz frequency range.


Dielectric Permittivity Barium Titanate Barium Titanate Neat Polymer High Frequency Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Venkatragavaraj, B. Satish, P.R. Vinod, M.S. Vijaya, J. Phys. D Appl. Phys. 34, 487 (2001)CrossRefGoogle Scholar
  2. 2.
    L.M. Zhang, Q. Shen, D. You, Key Eng. Mater. 249, 129 (2003)CrossRefGoogle Scholar
  3. 3.
    R. Senthilkumar, K. Sridevi, J. Venkatesan, V. Annamalai, M.S. Vijaya, Ferroelectrics 325, 121 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Seema, K.R. Dayas, J.M. Varghese, J. Appl. Polym. Sci. 106, 146 (2007)CrossRefGoogle Scholar
  5. 5.
    D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, M.S. Cao, Chin. Phys. Lett. 25, 4410 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Wegener, K. Arlt, J. Phys. D Appl. Phys. 41, 1654 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Greeshma, R. Balaji, M.M. Nayak, S. Jayakumar, Ferroelectrics 393, 88 (2009)CrossRefGoogle Scholar
  8. 8.
    W. Nhuapeng, J. Tontrakoon, T. Tunkasiri, CMU. J. 1, 61 (2002)Google Scholar
  9. 9.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mat. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  10. 10.
    B. Wei, Y. Daben, Ferroelectrics 157, 427 (1994)CrossRefGoogle Scholar
  11. 11.
    D. Sinha, P.K.C. Pillai, J. Appl. Phys. 64, 2571 (1988)CrossRefGoogle Scholar
  12. 12.
    D. Sinha, N. Shroff, P.K.C. Pillai, Ferroelectrics 103, 49 (1990)CrossRefGoogle Scholar
  13. 13.
    P. Thongsanitgarn, A. Watcharapasron, S. Jiansirisomboon, Surf. Rev. Lett. 17, 1 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Tripathi, A. K. Tripathi, P.K.C. Pillai, in Proceedings of 7th International Symposium on Electrets ISE 7, 7, 501 (1991)Google Scholar
  15. 15.
    B. Hilczer, J. Kulek, E. Markiewiez, M. Kosec, B. Malic, J. Non-Cryst. Solids 305, 167 (2002)CrossRefGoogle Scholar
  16. 16.
    A.K. Zak, W.C. Gan, W.H. Abd. Majid, Majid Darroudi, T.S. Velayuthan, Cer. Int. 37, 1653 (2011)CrossRefGoogle Scholar
  17. 17.
    M.B. Suresh, T.H. Yeh, C.C. Yu, C.C. Chou, Ferroelectrics 381, 80 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Firmino Mendes, C.M. Costa, V. Sencadas, J. Serrado Nunes, P. Costa, R. Gregorio Jr., S. Lanceros-Mendez, Appl. Phys. A 96, 899 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Gregorio Jr., M. Cestari, F.E. Bernardino, J. Mater. Sci. 31, 2925 (1996)CrossRefGoogle Scholar
  20. 20.
    R.W. Schwartz, J. Ballato, G.H. Haertling, in Piezoelectric and Electro-Optic Ceramics, Ceramic Materials for Electronics, 3rd edn., ed. by R.C. Buchanan (Marcel & Dekker, New York, 2004), pp. 249–250Google Scholar
  21. 21.
    M. Shoaib, Y. Faheem, A. Rauf, J. Aust. Ceram. Soc. 42, 67 (2006)Google Scholar
  22. 22.
    P.J. Haines, Thermal Methods of analysis, Principles, Applications and Problems, 1st edn. (Chapman and Hall, London, 1995), pp. 63–65CrossRefGoogle Scholar
  23. 23.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Optoelectron. Adv. Mater. Rapid Commun. 4, 838 (2010)Google Scholar
  24. 24.
    Z.M. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)CrossRefGoogle Scholar
  25. 25.
    C.V. Chanmal, J.P. Jog, Exp. Polym. Lett. 2, 294 (2008)CrossRefGoogle Scholar
  26. 26.
    T.J. Moon, H.G. Yeo, J.C. Hyun, Polym. Soc. Korea 12, 347 (1988)Google Scholar
  27. 27.
    A.R. Blythe, Electrical Properties of Polymers, 1st edn. (Cambridge University Press, Cambridge, 1979), pp. 38–39Google Scholar
  28. 28.
    S. Sen, S.K. Mishra, J. Phys. D Appl. Phys. 41, 1 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sara Aftab
    • 1
    • 3
  • D. A. Hall
    • 1
  • M. A. Aleem
    • 2
  • M. Siddiq
    • 3
  1. 1.School of Materials, Materials Science CenterManchester UniversityManchesterUK
  2. 2.PIEASIslamabadPakistan
  3. 3.Department of ChemistryQuaid-e-Azam UniversityIslamabadPakistan

Personalised recommendations