Effect of diffusion-annealing time on magnetoresistivity of Cu-diffused bulk MgB2 superconductors with experimental and theoretical approaches



This study reports the role of various annealing time such as 0.5, 1, 1.5 and 2 h on the flux pinning mechanism, physical and superconducting properties of Cu-diffused bulk MgB2 superconductors prepared at 850 °C with the aid of the magnetoresistivity measurements performed in the magnetic filed range from 0 to 7 T. The critical transition (both \( T_{c}^{onset} \) and \( T_{c}^{offset} \)) temperatures, irreversibility fields (μ0Hirr), upper critical fields (μ0Hc2), residual resistivity ratios (RR), cross-sectional area fractions (AF), penetration depths (λ), coherence lengths (ξ) and electronic mean free paths (\( \ell \)) of the MgB2 materials are derived from the magnetoresistivity curves. At the same time, activation energy (U0) values are determined from thermally activated flux creep model. Furthermore, resistivity criteria of 10 and 90 % normal-state resistivity serve as the important parameters for the description of μ0Hirr and μ0Hc2 values, respectively. At absolute zero temperature (T = 0 K), the extrapolation of the μ0Hirr(T) and μ0Hc2(T) curves gives the μ0Hirr(0) and μ0Hc2(0) values of the samples prepared. Similarly, the ξ values are derived from the μ0Hc2(0) values when the λ values are deduced from the Ginzburg–Landau parameter (\( \kappa \)). It is noted that the pinning mechanism, physical and superconducting properties of the samples improve with the enhancement of the diffusion-annealing time up to 1 h beyond which these properties start to destroy systematically and in fact reach the local minimum point for the sample annealed at 850 °C for 2 h as a consequence of the degradation of pinning ability, density, crystallinity and connectivity between grains. Additionally, the presence of the magnetic field leads to reduce these properties due to the decrement of the flux pinning in the samples. Namely, the maximum \( T_{c}^{onset} \) and \( T_{c}^{offset} \) values are found to be about 39.3 and 38.3 K for the sample annealed at 850 °C for 1 h. With the increment in the applied magnetic field up to 7 T, these values decrease to 32.0 and 29.2 K, respectively. Likewise, the U0 value of the sample reduces from 9,162 to 2,968 K with the increase of the applied field. On the other hand, the minimum \( T_{c}^{onset} \) of 30.9 K, \( T_{c}^{offset} \) of 27.4 and U0 of 898 K at 7 T applied magnetic field are obtained for the sample annealed at 850 °C for 2 h, pointing out that the latter sample obtains much weaker flux pinning, lesser crystallinity and connectivity between grains compared to the other samples. The dissipation mechanism is also discussed from the results of the magnetic field and temperature dependence of the activation (flux pinning) energy.


Applied Magnetic Field Coherence Length Critical Field Flux Pinning MgB2 Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Bugoslavsky, G.K. Perkins, X. Qi, L.F. Cohen, A.D. Caplin, Nature 410, 563 (2001)CrossRefGoogle Scholar
  3. 3.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Angst, D. Di Castro, D.G. Eshchenko, R. Khasanov, S. Kohout, I.M. Savic, A. Shengelaya, S.L. Bud’ko, P.C. Canfield, J. Jun, J. Karpinski, S.M. Kazakov, R.A. Ribeiro, H. Keller, Phys. Rev. B 70, 224513 (2004)Google Scholar
  5. 5.
    J.D. Fletcher, A. Carrington, O.J. Taylor, S.M. Kazakov, J. Karpinski, Phys. Rev. Lett. 95, 097005 (2005)CrossRefGoogle Scholar
  6. 6.
    D. Bumin, E. Yanmaz, M. Basoglu, A. Gencer, J. Supercond. Nov. Magn. 24, 211 (2011)CrossRefGoogle Scholar
  7. 7.
    N.N. Kolesnikov, M.P. Kulakov, Physica C 363, 166 (2001)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, S.H. Zhou, X.L. Wang, S.X. Dou, Physica C 468, 1383 (2008)CrossRefGoogle Scholar
  9. 9.
    X.F. Pan, Y. Zhao, Y. Feng, Y. Yang, C.H. Cheng, Physica C 468, 1169 (2008)CrossRefGoogle Scholar
  10. 10.
    Z. Ma, Y. Liu, Mater. Chem. Phys. 126, 114 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Lee, Physica C 385, 31 (2003)CrossRefGoogle Scholar
  12. 12.
    X.X. Xi, X.H. Zeng, A. Soukiassian, J. Jones, J. Hotchkiss, Y. Zhong, C.O. Brubaker, Z.K. Liu, J. Lettieri, D.G. Schlom, Y.F. Hu, E. Wertz, Q. Li, W. Tian, H.P. Sun, X.Q. Pan, Supercond. Sci. Technol. 15, 451 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Altin, M.A. Aksan, M.E. Yakinci, J. Phys. Chem. Solids 72, 1070 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Makise, S. Uchida, S. Horii, J. Shimoyama, K. Kishio, Physica C 772, 460 (2007)Google Scholar
  15. 15.
    N. Ghazanfari, A. Kilic, A. Gencer, H. Ozkana, Solid State Commun. 144, 210 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Jin, T.H. Teifei, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, Appl. Phys. Lett. 52, 2074 (1988)CrossRefGoogle Scholar
  18. 18.
    K. Salama, V. Selymanickam, L. Gao, K. Sun, Appl. Phys. Lett. 54, 2352 (1989)CrossRefGoogle Scholar
  19. 19.
    H. Fujimoto, M. Murakami, S. Dotoh, N. Koshizuka, S. Tanaka, Adv. Supercond. 2, 285 (1990)CrossRefGoogle Scholar
  20. 20.
    J.M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, Supercond. Sci. Technol. 21, 032001 (2008)CrossRefGoogle Scholar
  21. 21.
    N. Guclu, J. Alloys Comp. 509, 1691 (2011)CrossRefGoogle Scholar
  22. 22.
    T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)CrossRefGoogle Scholar
  23. 23.
    M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci. Mater. Electron (2012). doi: 10.1007/s10854-012-0755-0
  24. 24.
    M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989)CrossRefGoogle Scholar
  25. 25.
    N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104 (1996)CrossRefGoogle Scholar
  26. 26.
    G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Physica C 160, 333 (1989)CrossRefGoogle Scholar
  27. 27.
    X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindeish, M. Tomsic, J. Appl. Phys. 105, 103913 (2009)CrossRefGoogle Scholar
  28. 28.
    J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19, L33 (2006)CrossRefGoogle Scholar
  30. 30.
    R.H.T. Wilke, S.L. Bud‘ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Physica C 424, 1 (2005)Google Scholar
  31. 31.
    M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. Electron (2012). doi: 10.1007/s10854-012-0763-0
  32. 32.
    M.S. Ososfky, R.J. Soulen, S.A. Wolf, J.M. Broto, J.M. Rakoto, J.C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J.N. Eckstein, G.F. Virshup, Phys. Rev. Lett. 71, 2315 (1993)CrossRefGoogle Scholar
  33. 33.
    H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486 (2004)CrossRefGoogle Scholar
  34. 34.
    J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026 (2007)CrossRefGoogle Scholar
  35. 35.
    C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)CrossRefGoogle Scholar
  36. 36.
    D. Yazici, M. Erdem, B. Ozcelik, J. Supercond. Nov. Magn. 25, 293 (2012)Google Scholar
  37. 37.
    G. Yildirim, S. Bal, A. Varilci, J. Supercond. Nov. Magn. (2012). doi: 10.1007/s10948-012-1496-2
  38. 38.
    R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I.G. Eldeen, J. Supercond. Nov. Magn. 25, 739 (2012)Google Scholar
  39. 39.
    Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. Electron (2012). doi: 10.1007/s10854-012-0723-8
  40. 40.
    E. Yucel, C. Terzioglu, A. Varilci, A. Gencer, I. Belenli, Chin. J. Phys. 49, 809 (2011)Google Scholar
  41. 41.
    Y. Ding, H.C. Wang, F.X. Zhao, Z.X. Shi, Z.L. Zhang, L. Ma, H.L. Suo, J. Supercond. Nov. Magn. 23, 633 (2010)CrossRefGoogle Scholar
  42. 42.
    C.B. Eom, M.K. Lee, J.H. Choi, L.J. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, R.J. Cava, Nature 411, 558 (2001)CrossRefGoogle Scholar
  43. 43.
    A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii, K. Kishio, Appl. Phys. Lett. 86, 212502 (2005)CrossRefGoogle Scholar
  44. 44.
    Y. Iwasa, D.C. Larbalestier, M. Okada, R. Penco, M.D. Sumption, X.X. Xi, IEEE Trans. Appl. Supercond. 16, 1457 (2006)CrossRefGoogle Scholar
  45. 45.
    D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, M. Haas, Nature 410, 186 (2001)CrossRefGoogle Scholar
  46. 46.
    J. Chen, V. Ferrando, P. Orgiani, A.V. Pogrebnyakov, R.H.T. Wilke, J.B. Betts, C.H. Mielke, J.M. Redwing, X.X. Xi, Q. Li, Phys. Rev. B 74, 174511 (2006)CrossRefGoogle Scholar
  47. 47.
    M.D. Sumption, M. Bhatia, S.X. Dou, M. Rindfliesch, M. Tomsic, L. Arda, M. Ozdemir, Y. Hascicek, E.W. Collings, Supercond. Sci. Technol. 17, 1180 (2004)CrossRefGoogle Scholar
  48. 48.
    V. Braccini, L.D. Cooley, S. Patnaik, D.C. Larbalestier, P. Manfrinetti, A. Palenzona, A.S. Siri, Appl. Phys. Lett. 81, 4577 (2002)CrossRefGoogle Scholar
  49. 49.
    J.E.A. Gümbel, G. Fuchs, K. Nenkov, K.H. Müller, L. Schultz, Appl. Phys. Lett. 80, 2725 (2002)CrossRefGoogle Scholar
  50. 50.
    N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, J. Appl. Phys. 105, 07E315 (2009)Google Scholar
  51. 51.
    H. Kumakura, H. Kitaguchi, A. Matsumoto, H. Yamada, Supercond. Sci. Technol. 18, 1042 (2005)CrossRefGoogle Scholar
  52. 52.
    A. Varilci, D. Yegen, M. Tassi, D. Stamopoulos, C. Terzioglu, Phys. B 404, 4054 (2009)CrossRefGoogle Scholar
  53. 53.
    D.C. Larbalestier, A. Gurevich, D.M. Feldmann, A.A. Polyanskii, Nature 414, 368 (2001)CrossRefGoogle Scholar
  54. 54.
    S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68 (2010)CrossRefGoogle Scholar
  55. 55.
    A.A. Golubov, A. Brinkman, O.V. Dolgov, J. Kortus, O. Jepsen, Phys. Rev. B 66, 054524 (2002)CrossRefGoogle Scholar
  56. 56.
    D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, P.C. Canfield, Phys. Rev. Lett. 86, 2420 (2001)Google Scholar
  57. 57.
    M. Dressel, G. Grüner, Electrodynamics of solids, optical properties of electrons in matter, 1st edn. (University Press, Cambridge, 2002)CrossRefGoogle Scholar
  58. 58.
    B.B. Jin, T. Dahm, C. Iniotakis, A. IGubin, E.M. Choi, H.J. Kim, S.-I.K. Lee, W.N. Kang, S.F. Wang, Y.L. Zhou, A.V. Pogrebnyakov, J.M. Redwing, X.X. Xi, N. Klein, Supercond. Sci. Technol. 18, L1 (2005)Google Scholar
  59. 59.
    I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz’menko, D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002)CrossRefGoogle Scholar
  60. 60.
    A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575 (2010)CrossRefGoogle Scholar
  61. 61.
    A.I. Abou-Aly, M.T. Korayem, N.G. Gomaa, R. Awad, M.A. Al- Hajji, Supercond. Sci. Technol. 12, 147 (1999)CrossRefGoogle Scholar
  62. 62.
    K. Kawano, N. Hari Babu, E.S. Sadki, J.R. Cooper, H. Minami, D.A. Cardwell, A.M. Campbell, I.H. Inoue, Supercond. Sci. Tech. 14, L5 (2001)CrossRefGoogle Scholar
  63. 63.
    K. Kawano, J.S. Abell, M. Kambara, N. Hari Babu, D.A. Cardwell, Appl. Phys. Lett. 79, 2216 (2001)CrossRefGoogle Scholar
  64. 64.
    E. Govea-Alcaide, M. Hernandez-Wolpez, A.J. Batista-Leyva, R.F. Jardim, P. Mune, Physica C 423, 51 (2005)CrossRefGoogle Scholar
  65. 65.
    H.H. Sung, H.C. Yang, H.C. Chen, H.E. Horng, B.C. Yao, Chin. J. Phys. 30, 247 (1992)Google Scholar
  66. 66.
    A.J. Batista-Laeyva, R. Cobas, M.T.D. Orlando, E. Altshuler, Supercond. Sci. Technol. 16, 857 (2003)CrossRefGoogle Scholar
  67. 67.
    M.H. Pu, Y. Feng, P.X. Zhang, J.X. Wang, J.J. Du, L. Zhou, Physica C 467, 412 (2004)Google Scholar
  68. 68.
    A.I. Abou-Aly, M.F. Mostafa, I.H. Ibrahim, R. Awad, M.A. Al-Hajji, Supercond. Sci. Technol. 15, 938 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations