Room temperature magneto-optics of nanostructured ZnO:Mn thin film grown by spray pyrolysis

  • M. Ebrahimizadeh Abrishami
  • S. M. Hosseini


Undoped ZnO and ZnO:Mn thin films with different amounts of Mn concentration (5, 10 and 15 mol%) were grown on glass substrates by spray pyrolysis technique. X-ray diffraction patterns showed that the undoped ZnO thin film exhibited wurtzite structure preferably oriented in c-axis direction and the doped samples were polycrystalline. The surface morphology and topography of the films were investigated by SEM and STM micrographs. Magneto-optical characterizations of the samples were carried out by using Kerr and Faraday effects spectroscopy. Kerr effect studies showed that all Mn doped thin films exhibited the room temperature ferromagnetism. The magnetic ordering observed in the film with 5 mol% Mn concentration was stronger comparing to the other doped samples. The carrier densities of the samples were calculated by using a method based on the Faraday rotation. A clear relation between sp-d coupling and strength of magnetic ordering with carrier density was observed.


Carrier Density Faraday Rotation Dilute Magnetic Semiconductor Spray Pyrolysis Technique Average Crystalline Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. Mater. Electron. 16, 555–597 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Liu, X. Cheng, H. Liu, J. Yang, J. Cao, Y. Liu, X. Liu, M. Gao, M. Wei, L. Fei, J. Mater. Sci. Mater. Electron (2012). doi:  10.1007/s10854-012-0745-2
  4. 4.
    K.P. Bhatti, V.K. Malik, S. Chaudhary, J. Mater. Sci. Mater. Electron. 19, 849–854 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Tay, Y.H. Wu, G.C. Han, Y.B. Chen, X.Q. Pan, S.J. Wang, P. Yang, Y.P. Feng, J. Mater. Sci. Mater. Electron. 20, 60–73 (2009)CrossRefGoogle Scholar
  6. 6.
    H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, M. Gao, J. Mater. Sci. Mater. Electron. 20, 628–631 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Krithiga, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 22, 1229–1233 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 21, 1168–1173 (2010)CrossRefGoogle Scholar
  9. 9.
    C.G. Jin, Y. Gao, X.M. Wu, M.L. Cui, L.J. Zhung, Z.C. Chen, B. Hong, Thin Solid Films 518, 2152–2156 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Khorsand Zak, W.H. Abd. Majid, M. Ebrahimzadeh Abrishami, R. Yousefi, R. Parvizi, Solid State Sci. 14, 488–494 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Ebrahimizadeh Abrishami, A. Kompany, S.M. Hosseini, N. Ghajari Bardar, J. Sol-Gel Sci, Technol. 62, 153–159 (2012)Google Scholar
  12. 12.
    A.N. Baranov, G.N. Panin, M. Yoshimura, Y.-J. Oh, J. Electroceram. 17, 847–852 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Caglar, S. Ilican, M. Caglar, F. Yakuphanoglu, J. Sol-Gel Sci. Technol. 53, 372–377 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75 3366–3368 (1999)Google Scholar
  15. 15.
    K.H. Park, Y.Y. Song, E.K. Lee, L.S. Son, S.K. Oh, S.C. Yu, H.J. Kang, J. Korean Chem. Soc. 55, 2685–2688 (2009)Google Scholar
  16. 16.
    F. Oliveira, M.F. Cerqueira, M.I. Vasilevskiy, T. Viseu, J. Ayres de Campos, A.G. Rolo, J.S. Martins, N.A. Sobolev, E. Alves, Thin Solid Films 518, 4612–4614 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284–7286 (2001)CrossRefGoogle Scholar
  18. 18.
    J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Phys. Rev. Lett. 96, 197208 (2006)CrossRefGoogle Scholar
  19. 19.
    S.L. Chaung, Physics of Photonic Devices (Wiley & sons, Inc., New York, 2009)Google Scholar
  20. 20.
    Y. Natsume, H. Sakata, Thin Solid Films 372, 30–36 (2000)CrossRefGoogle Scholar
  21. 21.
    A. Chakraborty, T. Mondal, S.K. Bera, S.K. Sen, R. Ghosh, G.K. Paul, Mater. Chem. Phys. 112, 162–166 (2008)CrossRefGoogle Scholar
  22. 22.
    D.S. Score, M. Alshammari, Q. Feng, H.J. Blythe, A.M. Fox, G.A. Gehring, Z.-Y. Quan, X.-L. Li, X.-H. Xu, J. Phys. Conf. Ser. 200, 062024 (2010)CrossRefGoogle Scholar
  23. 23.
    A.J. Behan, J.R. Neal, R.M. Ibrahim, A. Mokhtari, M. Ziese, H.J. Blythe, A.M. Fox, G.A. Gehring, J. Magn. Magn. Mater. 310, 2158–2160 (2007)CrossRefGoogle Scholar
  24. 24.
    H.-J. Lee, B.-S. Kim, C.R. Cho, S.-Y. Jeong, Phys. Status Solidi B 241, 1533–1536 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Ebrahimizadeh Abrishami, A. Kompany, Adv. Mat. Res. 462, 201–205 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Ohno, Science 281, 951–956 (1998)CrossRefGoogle Scholar
  27. 27.
    D.D. Awschalom, N. Samarth, J. Magn. Magn. Mater. 200, 130–147 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of NeyshaburNeyshaburIran
  2. 2.Materials and Electroceramics Laboratory, Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations