Photoluminescence of sol–gel synthesized transparent amorphous semiconducting La- and Sm-codoped organo-silicate hybrid material

  • S. M. Abo-Naf
  • M. A. Marzouk
  • R. L. Elwan


Transparent amorphous La- and Sm-codoped organo-silicate hybrid material has been synthesized, in the form of bulk samples, via an alkoxide sol–gel route. Thermal behavior of the synthesized glass was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TGA). From the DTA–TGA analyses, it can be concluded that the organic component constitutes ≈8 weight percentage (wt%) of the as prepared La–Sm-codoped hybrid organo-silica glass; and this glass contains about 29.3 wt% structural water in the form of hydroxyl groups. Fourier transform infrared (FTIR) and ultraviolet–visible-near infrared (UV–Vis-NIR) spectroscopic analyses were used for structural characterization of the prepared hybrid sol–gel glass. FTIR spectroscopy reveals functional groups, specifically –CH2, C–O–C, Si–O–C and Si–O–Si bonds, which indicate the formation of covalent bonds between the organic and inorganic components in the produced polyethylene glycol (PEG)-silica hybrid network. UV–Vis-NIR spectrum exhibits well defined absorption bands of Sm3+ ions due to 4f–4f transitions. The evolution of Sm3+ photoluminescence in the La–Sm-codoped hybrid organo-silica glass was investigated at room temperature. A strong reddish-orange emission, attributed to the 4G5/2 → 6H7/2 electronic transition in 4f5 configuration of Sm3+ ions, was observed. Semiconducting characteristics have been also reported and interpreted.


Differential Thermal Analysis Differential Thermal Analysis Curve Medium Band Present Glass Hypersensitive Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, J. Non-Cryst. Solids 353, 2397 (2007)CrossRefGoogle Scholar
  2. 2.
    A.M. Kłonkowski, M. Zalewska, B. Kościelska, J. Non-Cryst. Solids 352, 4183 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Dwivedi, A. Bahadur, S.B. Rai, J. Non-Cryst. Solids 356, 1650 (2010)CrossRefGoogle Scholar
  4. 4.
    C.K. Jayasankar, E. Rukmini, Opt. Mater. 8, 193 (1997)CrossRefGoogle Scholar
  5. 5.
    A.M. Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L.R. Moorthy, J. Alloys Compd. 509, 4743 (2011)CrossRefGoogle Scholar
  6. 6.
    A.L. Demskaya, T.I. Prokhorova, S.S. Pivovarov, A.P. Sokolova, V.S. Khotimchenko, Colloids Surf. 63, 163 (1992)CrossRefGoogle Scholar
  7. 7.
    A.A. Ali, J. Lumin. 129, 1314 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Sakka (ed.), Handbook of Sol–Gel Science and Technology: Processing, Characterization and Application (Kluwer, Boston, 2005)Google Scholar
  9. 9.
    Y. Dimitriev, Y. Ivanova, R. Iordanova, J. Uni. Chem. Technol. Metall. (JUCTM) 43, 181 (2008)Google Scholar
  10. 10.
    E. Herrero, N. Carmona, J. Llopis, M.A. Villegas, J. Eur. Ceram. Soc. 27, 4589 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Schmidt, J. Non-Cryst. Solids 100, 51 (1988)CrossRefGoogle Scholar
  12. 12.
    J. Livage, C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992)CrossRefGoogle Scholar
  13. 13.
    L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)CrossRefGoogle Scholar
  14. 14.
    C.J. Brinker, G.W. Scherer, The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990)Google Scholar
  15. 15.
    E.M. Yeatman, M.M. Ahmad, O. McCarthy, J. Sol-Gel Sci. Technol. 19, 231 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Belleville, C. R. Chimie 13, 97 (2010)Google Scholar
  17. 17.
    R. Gupta, S. Mozumdar, N.K. Chaudhury, Biosens. Bioelectron. 20, 1358 (2005)CrossRefGoogle Scholar
  18. 18.
    H. Schmidt, J. Non-Cryst. Solids 73, 681 (1985)CrossRefGoogle Scholar
  19. 19.
    H. Schmidt, G. Jonschker, S. Goedicke, M. Mennig, J. Sol-Gel Sci. Technol. 19, 39 (2000)CrossRefGoogle Scholar
  20. 20.
    Pechini MP (1967) US Patent No. 3330697, Jul 11, 1967Google Scholar
  21. 21.
    Y. Lin, Y. Chang, W. Yang, B. Tsai, J. Non-Cryst. Solids 352, 789 (2006)CrossRefGoogle Scholar
  22. 22.
    J.F.S. Bitencourt, A. Ventieri, K.A. Gonçalves, E.L. Pires, J.C. Mittani, S.H. Tatumi, J. Non-Cryst. Solids 356, 2956 (2010)CrossRefGoogle Scholar
  23. 23.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  24. 24.
    J. Singh, K. Shimakawa, Advances in amorphous semiconductors, in Advances in Condensed Matter Science, vol. 5, ed. by D.D. Sarma, G. Kotliar, Y. Tokura (Taylor & Francis, London, 2003)Google Scholar
  25. 25.
    D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)CrossRefGoogle Scholar
  26. 26.
    N.F. Mott, E. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979), p. 289Google Scholar
  27. 27.
    J. Tauc, Mater. Sci. Bull. 5, 72 (1970)Google Scholar
  28. 28.
    D.A. Davis, Jpn. J. Appl. Phys. 32, 178 (1993)Google Scholar
  29. 29.
    H. Li, H. Yang, J. Jeong, K. Jang, H.S. Lee, S.S. Yi, Mater. Res. Bull. 46, 1352 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Eraiah, Bull. Mater. Sci. 29, 375 (2006)CrossRefGoogle Scholar
  31. 31.
    S.M. Abo-Naf, R.L. Elwan, M.A. Marzouk, J. Mater. Sci.: Mater. Electron. 23, 1022 (2012)CrossRefGoogle Scholar
  32. 32.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  33. 33.
    J. Tauc, J. Non-Cryst. Solids 149, 97 (1987)Google Scholar
  34. 34.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)CrossRefGoogle Scholar
  35. 35.
    H. Schmidt, J. Sol-Gel Sci. Technol. 8, 557 (1997)Google Scholar
  36. 36.
    H.K. Schmidt, E. Geiter, M. Mennig, H. Krug, C. Becker, R.-P. Winkler, J. Sol-Gel Sci. Technol. 13, 397 (1998)CrossRefGoogle Scholar
  37. 37.
    S. Sakka, K. Aoki, H. Kozuka, J. Yamaguchi, J. Mater. Sci. 28, 4607 (1993)CrossRefGoogle Scholar
  38. 38.
    B. Grobelna, M. Szabelski, K. Kledzik, A.M. Kłonkowski, J. Non-Cryst. Solids 353, 2861 (2007)CrossRefGoogle Scholar
  39. 39.
    X. Li, M. Yu, Z. Hou, G. Li, P. Ma, W. Wang, Z. Cheng, J. Lin, J. Solid State Chem. 184, 141 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Ivanova, T.S. Gerganova, Y. Dimitriev, I.M. Miranda Salvado, M.H.V. Fernandes, Thin Solid Films 515, 271 (2006)CrossRefGoogle Scholar
  41. 41.
    P. Judeinstein, H. Schmidt, J. Sol-Gel Sci. Technol. 3, 189 (1994)CrossRefGoogle Scholar
  42. 42.
    A. Patra, G.A. Baker, S.N. Baker, Opt. Mater. 27, 15 (2004)CrossRefGoogle Scholar
  43. 43.
    L. Boehm, R. Reisfeld, N. Spector, J. Solid State Chem. 28, 75 (1979)CrossRefGoogle Scholar
  44. 44.
    I.A. Rayappan, K. Selvaraju, K. Marimuthu, Phys. B 406, 548 (2011)CrossRefGoogle Scholar
  45. 45.
    J. Liao, L. Liu, H. You, H. Huang, W. You, Optik 123, 901 (2012)CrossRefGoogle Scholar
  46. 46.
    V. Kiisk, V. Reedo, O. Sild, I. Sildos, Opt. Mater. 31, 1376 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Cybińska, J. Legendziewicz, V. Trush, R. Reisfeld, T. Saraidarov, J. Alloys Compd. 451, 94 (2008)CrossRefGoogle Scholar
  48. 48.
    L. Hu, H. Song, G. Pan, B. Yan, R. Qin, Q. Dai, L. Fan, S. Li, X. Bai, J. Lumin. 127, 371 (2007)CrossRefGoogle Scholar
  49. 49.
    P.S. May, D.H. Metcall, F.S. Richardson, R.C. Carter, C.E. Miller, R.A. Palmer, J. Lumin. 51, 249 (1992)CrossRefGoogle Scholar
  50. 50.
    C. Nelson, I. Furukawa, W.B. Nelson, Mater. Res. Bull. 18, 959 (1983)CrossRefGoogle Scholar
  51. 51.
    C. Dayanand, G. Bhikshamaiah, M. Salagram, Mater. Lett. 23, 309 (1995)CrossRefGoogle Scholar
  52. 52.
    K.L. Chopra, S.K. Bahl, Thin Solid Films 11, 377 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research Centre (NRC)Dokki, CairoEgypt

Personalised recommendations