Advertisement

Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers

  • Xiancong He
  • Honglie Shen
  • Wei Wang
  • Baosen Zhang
  • Yuming Dai
  • Yubao Lu
Article

Abstract

Cu2ZnSnS4 (CZTS) films are successfully prepared on Mo substrate by electrochemical epitaxial method. An electrolyte contains 0.124 M CuSO4·5H2O, 0.14 M ZnSO4, 0.13 M SnCl2·2H2O, 0.16 M Na2S2O3·5H2O, 2.25 M NaOH, 1.36 M C6H5Na3O7, 1.00 M C4H6O6. The equilibrium potential for quaternary co-electrodeposited solution is set at −1.1 ∼ −1.20 V. The results show that elements are deposited in the following sequence: Cu/S/Zn/S/Cu/S/Sn/S…. The ternary and quaternary compounds are formed with the increasing temperature during annealing. Finally the CZTS film can be well formed at 550 °C. The resistivity of CZTS is about 5.6 × 104 Ω cm.

Keywords

Coated Glass Substrate Atomic Layer Epitaxy CZTS Thin Film Quaternary Compound CZTS Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the National Nature Science Foundation of China (61176062), Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Undergraduate Technology Innovation of Nanjing Institute of Technology (205090133).

References

  1. 1.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 94, 41903 (2009)CrossRefGoogle Scholar
  2. 2.
    D.A. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt.: Res. Appl. 20, 6 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kotschau, S. Schorr, H.W. Schock, Thin Solid Films 517, 2524 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Jpn. J. Appl. Phys. 1, 783 (2005)CrossRefGoogle Scholar
  5. 5.
    T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q.X. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J. Phys. Chem. Solids 66, 1978 (2005)CrossRefGoogle Scholar
  6. 6.
    T. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 9, 1199 (2007)Google Scholar
  8. 8.
    Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009)CrossRefGoogle Scholar
  9. 9.
    S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, X. Shi, W. Ye, C. Ma, C. Wang, Appl. Phys. A. 94, 381 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Sol. Energy Mater. Sol. Cells. 93, 996 (2009)CrossRefGoogle Scholar
  12. 12.
    J.J. Scragg, P.J. Dale, L.M. Peter, Thin Solid Films 517, 2481 (2009)CrossRefGoogle Scholar
  13. 13.
    C.P. Chan, H. Lam, K.Y. Wong, C. Surya, Mater. Res. Soc. Symp. Proc. 1123, 06 (2009)Google Scholar
  14. 14.
    B.W. Gregory, J.L. Stickney, J. Electroanal. Chem. 300, 543 (1991)CrossRefGoogle Scholar
  15. 15.
    I. Villegas, J.L. Stickney, J. Electrochem. Soc. 139, 686 (1992)CrossRefGoogle Scholar
  16. 16.
    Y.J. Wang, J.B. Ma, P. Liu et al., Mater. Lett. 77, 13 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiancong He
    • 1
    • 2
  • Honglie Shen
    • 1
  • Wei Wang
    • 1
  • Baosen Zhang
    • 2
  • Yuming Dai
    • 2
  • Yubao Lu
    • 2
  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringNanjing Institute of TechnologyNanjingPeople’s Republic of China

Personalised recommendations