Advertisement

Electrical properties of C19H20N2O4SW based molecular-materials thin films prepared by electrodeposited technique

  • M. E. Sánchez-Vergara
  • C. Álvarez-Toledano
  • A. Cedillo-Cruz
  • A. Moreno
  • J. N. Reider-Burstin
Article

Abstract

Semiconductor molecular-material thin films of Fischer carbene tungsten(0) have been prepared by electro-deposition in the electrochemical module of the atomic force microscope (AFM). This use of the AFM is proposed as a more efficient way to generate molecular materials, as it permits thin-film synthesis to be monitored and manipulated before characterization. The films thus obtained were characterized by infrared (FTIR), AFM and energy dispersive spectroscopy. The molecular material thin films exhibit the same intra-molecular bonds and the chemistry composition as the original compounds. The effect of temperature on conductivity was also measured in these samples: its behavior found as pertaining to a semiconducting material. The activation energies of thin films are determined from Arrhenius plots with these energies being within the range from 0.4 to 1.82 eV. The electrical transport properties for the thin films were determined by their chemical structure.

Keywords

Atomic Force Microscopy Carbene Energy Dispersive Spectrometer Highly Orient Pyrolytic Graphite Molecular Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

One of the authors (M. E. Sánchez-Vergara) gratefully acknowledges the financial support of the SEP-CONACYT-México project number 153751.

References

  1. 1.
    J. Puigdollers, C. Voz, A. Orpella, I. Martin, M. Vetter, R. Alcubilla, Thin Solid Films 427, 367–370 (2003)CrossRefGoogle Scholar
  2. 2.
    M.R. Bryce, J. Mater. Chem. 5, 1481 (1995)CrossRefGoogle Scholar
  3. 3.
    G.B. Stringfellow, Organometallics Chemical Vapor Epitaxy: Theory and Practice (Academic Press, New York, 1989)Google Scholar
  4. 4.
    S. Rigaut, J. Massue, D. Touchard, J.L. Fillaut, S. Golhen, P.H. Dixneuf, Angew. Chem. Int. Edit. Engl. 41, 4513 (2002)CrossRefGoogle Scholar
  5. 5.
    J.C. Röder, F. Meyer, E. Kaifer, Angew. Chem. Int. Edit. Engl. 41, 2304 (2002)CrossRefGoogle Scholar
  6. 6.
    D. Astruc, Acc. Chem. Res. 30, 383 (1997)CrossRefGoogle Scholar
  7. 7.
    L. Meca, D. Dvořák, J. Ludvík, I. Císařová, P. Stĕpnička, Organometallics 11, 2541 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Martínez-Álvarez, M. Gómez-Gallego, I. Fernández, M.J. Mancheño, M.A. Sierra, Organometallics 23, 4647 (2004)CrossRefGoogle Scholar
  9. 9.
    P. Cassoux, D. De Caro, L. Valade, H. Casellas, B. Daffos, M.E. Sánchez Vergara, Mol. Cryst. Liq. Cryst. 380, 45 (2002)CrossRefGoogle Scholar
  10. 10.
    J. Labuda, V. Plaskoñ, Inorg. Chim. Acta 13, 146 (1988)Google Scholar
  11. 11.
    M.D. Ward, Inorg. Chem. 25, 4444 (1986)CrossRefGoogle Scholar
  12. 12.
    A. Cedillo, Reactividad de metilaminocarbenos del grupo VI-VIS-À-VIS isotiocianato de arilo. Tesis de Maestría. (UNAM, 2010)Google Scholar
  13. 13.
    S. Sarkar, Y. Aydogdu, F. Dagdelen, B. Bikash Bhaumik, K. Dey, Mater. Chem. Phys. 88, 357–363 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. E. Sánchez-Vergara
    • 1
  • C. Álvarez-Toledano
    • 2
  • A. Cedillo-Cruz
    • 2
  • A. Moreno
    • 2
  • J. N. Reider-Burstin
    • 1
  1. 1.Facultad de IngenieríaUniversidad Anáhuac México NorteHuixquilucanMexico
  2. 2.Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoMexico, D.F.Mexico

Personalised recommendations