Advertisement

Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-Y2O3 ceramics with large piezoelectric coefficient obtained by low-temperature sintering

  • Yerang Cui
  • Changlai Yuan
  • Xinyu Liu
  • Xiayan Zhao
  • Xu Shan
Article

Abstract

Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-xwt.%Y2O3 (BCZT-xY) piezoelectric ceramics have been synthesized using solid-state reaction technique and the effects of Y2O3 addition on the phase structure and piezoelectric properties of the ceramics have been studied. The results reveal that the addition of Y2O3 significantly improves the sinterability of BCZT ceramics, resulting in a reduction of sintering temperature from 1,540 to 1,350 °C, and an increase of the Curie temperature T C from 85 to 95 °C. X-ray diffraction data shows that Y2O3 diffuses into the lattice of BCZT-xY ceramics and a pure perovskite phase forms in the ceramics. Scanning electron microscopy images indicate that a small amount of Y2O3 addition affects the microstructure, obviously. Main piezoelectric parameters of these ceramics are optimized around x = 0.06 wt % with a large piezoelectric coefficient (d 33  = 560 pC/N), a high planar electromechanical coefficient (k p  = 53 %) and a low dissipation factor (tan δ = 0.9 %) at 1 kHz. The results indicate that the BCZT-xY ceramics are promising lead-free materials for practical applications.

Keywords

Y2O3 Piezoelectric Property Piezoelectric Ceramic Planar Coupling Excellent Piezoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge the financial support of the National Nature Science Foundations, grant No. 51102055, and Guangxi Nature Science Foundations, grant No.2010GXNSFD013007.

References

  1. 1.
    B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross, Phys. Rev. B 63, 14103 (2000)CrossRefGoogle Scholar
  2. 2.
    C. Eric, Nature 432, 24 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Jiang, Y. Liu, G. Chen, J. Chen, J. Mater. Sci.: Mater. Electron. 22, 876 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Zhou, Y. Liu, W. Li, C. Yuan, J. Mater. Sci.: Mater. Electron. 21, 364 (2010)CrossRefGoogle Scholar
  6. 6.
    K. Ramam, M. Lopez, Mater. Sci. Eng. B 145, 41 (2007)CrossRefGoogle Scholar
  7. 7.
    W.F. Liu, X.B. Ren, Phys. Rev. Let. 103, 257602 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Wang, Y.X. Li, Y.Q. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011)CrossRefGoogle Scholar
  9. 9.
    S.W. Zhang, H.L. Zhang, B.P. Zhang, S. Yang, J. Alloys. Comp. 506, 131 (2010)CrossRefGoogle Scholar
  10. 10.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 94, 3181 (2011)CrossRefGoogle Scholar
  11. 11.
    S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009)CrossRefGoogle Scholar
  12. 12.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 93, 2942 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Zhou, X. Liu, W. Li, C. Yuan, Mater. Res. Bull. 44, 724 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yerang Cui
    • 1
  • Changlai Yuan
    • 1
  • Xinyu Liu
    • 1
  • Xiayan Zhao
    • 1
  • Xu Shan
    • 1
  1. 1.Department of Information Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations