Advertisement

Structure and properties of LiNbO3 doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ceramics with the morphotropic phase boundary composition

  • Qiang Zhang
  • Zhenrong Li
  • Mingxue Jiang
  • Linhang Wang
Article

Abstract

(1−x){0.62Bi(Mg1/2Ti1/2)O3–0.38PbTiO3}–xLiNbO3 (BMT–0.38PT–xLN, 0.00 ≤ x ≤ 0.06) ceramics were prepared by the conventional mixed oxide method. It showed that all compositions belong to the pseudocubic phase when LN doped into BMT–0.38PT ceramics, meanwhile piezoelectric properties declined. With LN content increasing, a change from a ferroelectric behavior to an abnormal diffuse behavior was observed. Furthermore, stable dielectric permittivity (1,300–3,800) and low losses were obtained in the temperature range 100–400 °C for 0.02 ≤ x ≤ 0.06 samples, indicating a potential for high-temperature applications.

Keywords

LiNbO3 Piezoelectric Property Morphotropic Phase Boundary High Curie Temperature Ferroelectric Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51002116) and Postdoctoral Foundation (No. DB09043).

References

  1. 1.
    R.E. Eitel, C.A. Ransall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)CrossRefGoogle Scholar
  2. 2.
    S.J. Zhang, R. Xia, C.A. Radall, T.R. Shrout, R.R. Duan, R.F. Speyer, J. Mater. Res. 20, 2067 (2005)CrossRefGoogle Scholar
  3. 3.
    T.P. Comyn, S.P. McBirde, A.J. Bell, Mater. Lett. 58, 3844 (2004)CrossRefGoogle Scholar
  4. 4.
    M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96, 4405 (2004)CrossRefGoogle Scholar
  5. 5.
    S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 034108 (2005)CrossRefGoogle Scholar
  6. 6.
    M.R. Suchomel, P.K. Davies, Appl. Phys. Lett. 86, 262905 (2005)CrossRefGoogle Scholar
  7. 7.
    S.J. Zhang, C. Stringer, R. Xia, S.M. Choi, C.A. Randall, T.R. Shrout, J. Appl. Phys. 98, 034103 (2005)CrossRefGoogle Scholar
  8. 8.
    R.E. Eitel, C.A. Randall, T.R. Shrout, S.E. Park, Jpn. J. Appl. Phys. Part 1(41), 2099 (2002)CrossRefGoogle Scholar
  9. 9.
    S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86, 262904 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Chen, X. Dong, H. Yang, R. Liang, C. Mao, J. Am. Ceram. Soc. 90, 477 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, J. Zhu, D. Xiao, B. Qin, Y. Jiang, J. Alloy. Compd. 470, 420 (2009)CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, Z. Li, L. Li, Z. Xu, X. Yao, J. Mater. Sci. Mater. Elect. 22, 1490 (2011)CrossRefGoogle Scholar
  13. 13.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, J. Appl. Phys. 95, 3633 (2004)CrossRefGoogle Scholar
  14. 14.
    M.D. Snel, W.A. Groen, G. de With, J. Europ. Ceram. Soc. 25, 3229 (2005)CrossRefGoogle Scholar
  15. 15.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 12 (1994)CrossRefGoogle Scholar
  16. 16.
    N. Setter, L.E. Cross, J. Mater. Sci. 15, 2478 (1980)CrossRefGoogle Scholar
  17. 17.
    A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)CrossRefGoogle Scholar
  18. 18.
    C.C. Huang, D.P. Cann, X. Tan, N. Vittayakorn, J. Appl. Phys. 102, 044103 (2007)CrossRefGoogle Scholar
  19. 19.
    Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Postdoctoral Research Station of Material Science and EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric ResearchXi’an Jiaotong UniversityXi’anChina

Personalised recommendations