Structural and optical properties of CdS thin films prepared by chemical bath deposition at different ammonia concentration and S/Cd molar ratios



CdS thin films were prepared by chemical bath deposition technique using the precursors of SC(NH2)2, CdCl2, NH4Cl, NH3·H2O and deionized water. The obtained thin films were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer, UV–VIS specrophotometry and photoluminescence spectroscopy. The morphology, structural and optical properties of CdS thin films were investigated as a function of ammonia concentration and S/Cd molar ratios in precursors. The results reveal that morphology of CdS films change from flake like into spherical particle like, crystal structure from wurtzite structure to zinc blende structure, S/Cd atom ratios in CdS thin films increase and optical band gap E g decrease with increasing ammonia concentration in precursors. The room temperature photoluminescence spectrum of CdS thin films shows a strong peak at about 500 nm and a weak peak at about 675 nm.


Ammonia Concentration Wurtzite Structure Chemical Bath Deposition Optical Transmittance Spectrum CdTe Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the financial support of the Guangdong Province and the Ministry of Education Cooperation Projects (Grant No. 2011A090200003) and the Projects from the Science and Technology Department of Guangzhou City (Grant No. 12C52111614).


  1. 1.
    I. Günal, M. Parlak, J. Mater. Sci.: Mater. Electron. 8, 9 (1997)CrossRefGoogle Scholar
  2. 2.
    M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt. Res. Appl. 311 (1999)Google Scholar
  3. 3.
    J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993)CrossRefGoogle Scholar
  4. 4.
    B. Su, K.L. Choy, Thin Solid Films 361, 102 (2000)CrossRefGoogle Scholar
  5. 5.
    N. Naghavi, S. Spiering, B. Canava, D. Lincot, Prog. Photovolt: Res. Appl. 437 (2003)Google Scholar
  6. 6.
    S.N. Sharma, R.K. Sharma, K.N. Sood, S. Singh, Mater. Chem. Phys. 593, 368 (2005)CrossRefGoogle Scholar
  7. 7.
    R.W. Birkmire, B.E. Mccandless, S.S. Hegedus, Sol. Energy Mater. Sol. Cells 12, 145 (1992)Google Scholar
  8. 8.
    K. Ravichandran, P. Philominathan, Appl. Surf. Sci. 255, 5736 (2009)CrossRefGoogle Scholar
  9. 9.
    V. Senthamilselvi, K. Saravanakumar, N.J. Begum, R. Anandhi, A.T. Ravichandran, B. Sakthivel, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 23, 302 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Edamura, J. Muto, Thin Solid Films 235, 198 (1993)CrossRefGoogle Scholar
  11. 11.
    Y. Tomita, T. Kawai, Y. Hatanaka, J. Appl. Phys. 33, 3383 (1994)Google Scholar
  12. 12.
    M.A. Martinez, C. Guillen, J. Herrenro, Appl. Surf. Sci. 140, 182 (1999)CrossRefGoogle Scholar
  13. 13.
    P.N. Gibson, M.E. Ozsan, D. Lincot, P. Cowache, D. Summa, Thin Solid Films 361, 34 (2000)CrossRefGoogle Scholar
  14. 14.
    F.Y. Liu, Y.Q. Lai, J. Liu, B. Wang, S.S. Kuang, Z.A. Zhang, J. Li, Y.X. Liu, J. Alloy. Compd. 493, 305 (2010)CrossRefGoogle Scholar
  15. 15.
    D.A. Montijo, M.S. Lerma, L.R. Fernandez, L. Huerta. Appl. Surf. Sci. 256, 4280 (2010)CrossRefGoogle Scholar
  16. 16.
    J.N. Ximello, G. Contreras, G.R. Morales, O. Vigil, G.S. Roeriguez, Sol. Energy Mater. Sol. Cells 90, 727 (2006)CrossRefGoogle Scholar
  17. 17.
    J.H. Lee, Thin Solid Films 515, 6089 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Bodaghi, Curr. Appl. Phys. 9, 1263 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Mendoza-Perez, J. Aguilar-Hernandez, J. Saatre-Hernandez, N. Ximello-Quiebras, G. Contreras-Puente, G. Santana-Rodriguez, O. Vigil-Galan, E. Moreno-Garcia, A. Morales-Acevedo, Sol. Energy 80, 682 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Ravichandran, G. Muruganantham, B. Sakthivel, P. Philominathan, Surf. Eng. 26, 8 (2010)Google Scholar
  21. 21.
    S.B. Patil, A.K. Singh, Appl. Surf. Sci. 256, 2884 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Zelaya-Angel, R. Lozada-Morales, Phys. Rev. B 62, 13064 (2000)CrossRefGoogle Scholar
  23. 23.
    I.O. Oladeji, L. Chow, J.R. Liu, W.K. Chu, A. Bustamante, C. Fredricksen, A.F. Schulte, Thin Solid Films 359, 154 (2000)CrossRefGoogle Scholar
  24. 24.
    A. Cortes, H. Gomez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21 (2004)CrossRefGoogle Scholar
  25. 25.
    K.S. Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatangar, Mate. Chem. Phys. 68, 22 (2001)CrossRefGoogle Scholar
  26. 26.
    D. Lincot, R. Ortega-Borgees, M. Froment, Philosophical Mag B. 68, 185 (1993)CrossRefGoogle Scholar
  27. 27.
    L. Qi, G.B. Mao, J.P. Ao, Appl. Surf. Sci. 254, 5711 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films 511, 443 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Cao, Y. Sun, J. Wu, X. Chen, N. Dai, J. Alloy. Compd. 508, 297 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiang Hui Zhao
    • 1
  • Ai Xiang Wei
    • 1
  • Yu Zhao
    • 1
  • Jun Liu
    • 1
  1. 1.School of Material and EnergyGuangdong University of TechnologyGuangzhouChina

Personalised recommendations