Advertisement

Sintering and electrical properties of Nb5+ doped 0.63Bi(Mg1/2Ti1/2)O3–0.37PbTiO3 piezoelectric ceramics

  • Xun Ji
  • Ruzhong Zuo
  • Wenwu Zuo
  • Xiaohui Wang
  • Longtu Li
Article

Abstract

Nb5+ doped 0.63Bi(Mg1/2Ti1/2)O3–0.37PbTiO3 (0.63BMT–0.37PT + xNb5+) ceramics have been fabricated by means of citrate sol–gel method and ordinary sintering. Effects of Nb5+ doping on the densification and various electrical properties were studied. The results indicated that the addition of a small amount of Nb5+ gradually changes the crystal structure from a typical rhombohedral-tetragonal coexisted structure to a nearly pure rhombohedral structure. A slight amount of secondary phases start to appear as the doping content of Nb5+ is more than 1.5 mol%, indicating that the solubility limit of Nb5+ in the matrix composition is reached. Moreover, electrical properties of the sintered ceramics were obviously changed based on the effect of densification and ionic substitution. 0.63BMT–0.37PT + 0.005Nb5+ ceramics sintered at 1,020 °C exhibit optimum properties of piezoelectric constant d33 ~ 245 pC/N, planar electromechanical coupling factor kp ~ 30 %, \( \varepsilon_{33}^{\text{T}} /\varepsilon_{\text{o}} \) ~ 1,220, and Tc ~ 460 °C.

Keywords

Piezoelectric Property Doping Content Morphotropic Phase Boundary Dielectric Anomaly Pure Perovskite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by a project of Natural Science Foundation of Anhui Province (1108085J14), the National Natural Science Foundation of China (50972035), a Program for New Century Excellent Talents in University, State Education Ministry (NCET-08-0766) and 973 Program (No. 2009CB623301).

References

  1. 1.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, J. Appl. Phys. 95, 3633 (2004)CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, Z.R. Li, F. Li, Z. Xu, X. Yao, J. Am. Ceram. Soc. 93, 3330 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Chen, X.L. Tan, W. Jo, J. Rödel, J. Appl. Phys. 106, 034109 (2009)CrossRefGoogle Scholar
  4. 4.
    M.D. Snel, W.A. Groen, G. de With, J. Eur. Ceram. Soc. 25, 3229 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Sharma, D.A. Hall, J. Mater. Sci.: Mater. Electron. 21, 405 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Moure, M. Alguer′o, L. Pardo, E. Ringgaard, A.F. Pedersen, J. Eur. Ceram. Soc. 27, 237 (2007)CrossRefGoogle Scholar
  7. 7.
    S.H. Yu, Y. Ye, H.T. Huang, L.M. Zhou, Z.Q. Wang, Proc. of SPIE 6423, 64234H (2007)CrossRefGoogle Scholar
  8. 8.
    S.M. Ke, H.T. Huang, S.H. Yu, L.M. Zhou, J. Appl. Phys. 107, 084112 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Villegas, C. Moure, J.R. Jurado, P. Durán, J. Mater. Sci. 29, 4975 (1994)CrossRefGoogle Scholar
  10. 10.
    S.J. Yoon, A. Joshi, K. Uchino, J. Am. Ceram. Soc. 80, 1035 (1997)CrossRefGoogle Scholar
  11. 11.
    R.B. Atkin, R.M. Fulrath, J. Am. Ceram. Soc. 54, 265 (1971)CrossRefGoogle Scholar
  12. 12.
    R.B. Atkin, R.L. Holman, R.M. Fulrath, J. Am. Ceram. Soc. 54, 113 (1971)CrossRefGoogle Scholar
  13. 13.
    E.S. Machlin, Trans. AIME 224, 1153 (1962)Google Scholar
  14. 14.
    P. Gordon, R.A. Vandermeer, Trans. AIME 224, 917 (1962)Google Scholar
  15. 15.
    C.A. Randall, S.A. Markgraf, A.S. Bhalla, K. Baba-Kishi, Phys. Rev. B 40, 413 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xun Ji
    • 1
  • Ruzhong Zuo
    • 1
  • Wenwu Zuo
    • 1
  • Xiaohui Wang
    • 2
  • Longtu Li
    • 2
  1. 1.Institute of Electro Ceramics and Devices, School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Department of Materials Science and Engineering, State Key Lab of New Ceramics and Fine ProcessingTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations