Formation of AuSnx IMCs in Sn3.5Ag0.75Cu micro-solder joints fabricated by laser and hot air reflow processes

  • Wei Liu
  • Yanhong Tian
  • Chunqing Wang
  • Lining Sun


The present study aims to investigate morphology and distribution of AuSnx IMCs (Intermetallic Compounds) in laser and hot air reflowed micro-solder joints. Diameter of Sn3.5Ag0.75Cu solder balls used in the experiments was 120 μm. Thickness of Au surface finish on pads of the joints was 0.1, 3.0 or 4.0 μm. In solder joints fabricated by the laser reflow (LR) process, most AuSnx IMCs were in needle-like or dendritic shape, and located near interfaces of solder and pads. Whereas, the AuSnx IMCs within the solder joints fabricated by the hot air reflow (HR) process presented in fibrous or faceted shape, and distributed all over the solder joints. Diversity of morphology and distribution of AuSnx IMCs in the LR and HR solder joints is caused by different characteristics of heat source, different solidification rate of solder joints, and different reaction time between Au and Sn in the two reflow processes.


Solder Joint Solder Ball Under Bump Metallization Reflow Process Sharp Temperature Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the National Natural Science Foundation of China (Grant No. 51005058) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT. NSRIF. 2009037).


  1. 1.
    H. Sakurai, A. Baated, K. Lee, S. Kim, K.O. Kim, Y. Kukimoto, S. Kumamoto, K. Suganuma, J. Electron. Mater. 39, 2598 (2010)CrossRefGoogle Scholar
  2. 2.
    C.S. Hsi, C.T. Lin, T.C. Chang, M.C. Wang, M.K. Liang, Metall. Mater. Trans. A 41, 275 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Sakurai, Y. Kukimoto, S. Kim, A. Baated, K. Lee, K.S. Kim, S. Kumamoto, K. Suganuma, Mater. Trans. 51, 1727 (2010)CrossRefGoogle Scholar
  4. 4.
    N.B. Duong, T. Ariga, L.B. Hussain, A.B. Ismail, Mater. Trans. 49, 1462 (2008)CrossRefGoogle Scholar
  5. 5.
    J.W. Yoon, H.S. Chun, S.B. Jung, J. Mater. Sci.: Mater. Electron. 18, 559 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Chen, J. Shen, W.D. Xie, H. Liu, J. Mater. Sci.: Mater. Electron. 22, 1703 (2011)CrossRefGoogle Scholar
  7. 7.
    D.Q. Yu, H. Oppermann, J. Kleff, M. Hutter, J. Mater. Sci.: Mater. Electron. 20, 55 (2009)CrossRefGoogle Scholar
  8. 8.
    B.Y. Wu, H.W. Zhong, Y.C. Chan, M.O. Alam, J. Mater. Sci.: Mater. Electron. 17, 943 (2006)CrossRefGoogle Scholar
  9. 9.
    G.T. Lim, B.J. Kim, K. Lee, J. Kim, Y.C. Joo, Y.B. Park, Met. Mater. Int. 15, 819 (2009)CrossRefGoogle Scholar
  10. 10.
    H.T. Chen, C.Q. Wang, M.Y. Li, D.W. Tian, IEEE Trans. Compon. Pack. Tech. 31, 831 (2008)CrossRefGoogle Scholar
  11. 11.
    M.R. Marks, J. Electron. Mater. 31, 265 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Yamada, K. Miura, M. Kajihara, Mater. Sci. Eng. A 390, 118 (2005)CrossRefGoogle Scholar
  13. 13.
    H.L. Lau, Ball Grid Array Technology (McGraw Hill, New York, 1995), p. 23Google Scholar
  14. 14.
    L. Zhang, S.B. Xue, L.L. Gao, Z. Sheng, G. Zeng, Y. Chen, J. Mater. Sci.: Mater. Electron. 21, 635 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Baated, K.S. Kim, K. Suganuma, S. Huang, B. Jurcik, S. Nozawa, M. Ueshima, J. Mater. Sci.: Mater. Electron. 21, 1066 (2010)CrossRefGoogle Scholar
  16. 16.
    C.G. Pickin, S.W. Williams, P. Prangnell, C. Derry, M. Lunt, Sci. Technol. Weld. Join. 15, 491 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Wahba, M. Mizutani, Y. Kawahito, S. Katayama, Sci. Technol. Weld. Join. 15, 559 (2010)CrossRefGoogle Scholar
  18. 18.
    N. Coniglio, V. Linton, E. Gamboa, Sci. Technol. Weld. Join. 15, 361 (2010)CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, Y.H. Lee, Scripta Mater. 43, 789 (2000)CrossRefGoogle Scholar
  20. 20.
    J.O. Kim, J.P. Jung, J.H. Lee, J. Suh, H.S. Kang, Met. Mater. Int. 15, 119 (2009)CrossRefGoogle Scholar
  21. 21.
    Z.J. Han, S.B. Xue, J.X. Wang, X. Zhang, J. Electron. Packag. 131, 021004 (2009)CrossRefGoogle Scholar
  22. 22.
    B. Zhang, P.K. Liu, H. Ding, W.W. Cao, Microelectron. Reliab. 50, 1021 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Yin, S.J. Meschter, T.J. Singler, Acta Metall. 52, 2873 (2004)Google Scholar
  24. 24.
    W. Liu, C. Q. Wang and M. Y. Li. in Proceedings of International Conference on Asian Green Electronics, 197 (2005)Google Scholar
  25. 25.
    M. He, Z. Chen, G.J. Qi, C.C. Wong, S.G. Mhaisalkar, Thin Sol. Films 462–463, 363 (2004)CrossRefGoogle Scholar
  26. 26.
    W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, J.F. Guan, J. Alloys Compd. 414, 123 (2006)CrossRefGoogle Scholar
  27. 27.
    Y.H. Tian, C.Q. Wang, D.M. Liu, Modelling Simul. Mater. Sci. Eng. 12, 235 (2004)Google Scholar
  28. 28.
    H. Okamoto, J. Phase Equilib. 14, 765 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei Liu
    • 1
    • 2
  • Yanhong Tian
    • 1
  • Chunqing Wang
    • 1
  • Lining Sun
    • 2
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.Mechanical Engineering Post-Doctoral Mobile Research StationHarbin Institute of TechnologyHarbinChina

Personalised recommendations