Advertisement

Structure and dielectric properties of BaO–B2O3–ZnO–[(BaZr0.2Ti0.80)O3]0.85 − [(Ba0.70Ca0.30)TiO3]0.15 glass–ceramics for energy storage

  • Venkata Sreenivas Puli
  • Dhiren K. Pradhan
  • Ashok Kumar
  • R. S. Katiyar
  • Xiaofeng Su
  • C. M. Busta
  • M. Tomozawa
  • Douglas B. Chrisey
Article

Abstract

Alkali-free [0.10 BaO + 0.4 B2O3 + 0.5 ZnO], [0.3 BaO + 0.6 B2O3 + 0.1 ZnO] glass powder materials were mixed with [(BaZr0.2Ti0.80)O3]0.85 − [(Ba0.70Ca0.30)TiO3]0.1—BZT–BCT ceramic materials for energy density storage capacitor applications. Calcined (1,250 °C/10 h) BZT–BCT ceramic powder materials were mixed with (15 wt. %) two different glass compositions of [0.10 BaO + 0.4 B2O3 + 0.5 ZnO], [0.3 BaO + 0.6 B2O3 + 0.1 ZnO] separately and were ground using low energy ball milling for 2 h at 400 rpm. The ball milled powders were made into discs having 13 mm diameter and 0.5 mm thickness using hydraulic press (2 ton) and sintered at 900 °C for 2 h. Both the compositions have shown dielectric breakdown field strength ~260, 280 kV/cm and energy density values ~1.118 and 0.50 J/cm3.

Keywords

B2O3 Barium Strontium Titanate Energy Storage Density High Breakdown Voltage Pure BaTiO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the NSF award grant #1038272. The authors are also thankful to Cristina Diaz Borrero, Material Characterization Center, University of Puerto Rico for doing SEM measurements.

References

  1. 1.
    Seung Kwon Hong, Hye Young Koo, Dae Soo Jung, II Soon Suh, Yun Chan Kang, J. Alloys Compd. 437, 215–219 (2007)Google Scholar
  2. 2.
    A. Herczog, IEEE Trans. PHP 9(4), 247–256 (1973)Google Scholar
  3. 3.
    S.M. Lynch, J.E. Shelby, J. Am. Ceram. Soc. 61(6), 424–427 (1978)Google Scholar
  4. 4.
    C.G. Bereeron, in Crystallization of Perovskite Lead Titanate from Glasses. Ph.D. thesis. University of Illinois, Urbana (1961)Google Scholar
  5. 5.
    E.P. Gorzkowski, P. Ming-Jen, A.B. Barry, C.M.W. Carl, J. Am. Ceram. Soc. 91(4), 1065–1069 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Changhui, S. Xudong, D. Jun, T. Qun, J. Phys. Conf. Ser. 152, 012061 (2009)CrossRefGoogle Scholar
  7. 7.
    H.C. Guo, J.Z. Wen, Adv. Mater. Res. 311–313, 2071–2074 (2011)Google Scholar
  8. 8.
    Z. Qingmeng, W. Lei, L. Jun, T. Qun, D. Jun, J. Am. Ceram. Soc. 92(8), 1871–1873 (2009)CrossRefGoogle Scholar
  9. 9.
    V.S. Puli, D.K. Pradhan, A. Kumar, D.B. Chrisey, M. Tomozawa, S.K. Ram, Mater. Res. Bull. (under review)Google Scholar
  10. 10.
    V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, J. Non Crystall. Solids (under review)Google Scholar
  11. 11.
    V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, S.K. Ram, J. Phys. D Appl. Phys. 44, 395403 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Min, Z. Ruzhong, Q. Shishun, L. Longdong, J. Mater. Sci. Mater. Electron. 23(3), 753–757 (2011)Google Scholar
  13. 13.
    A. Chaves, R.S. Katiyar, S.P.S. Proto, Phys. Rev. B 10, 3523–3533 (1974)CrossRefGoogle Scholar
  14. 14.
    J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M.S. Li, E. Longo, Solid State Sci. 12, 1160–1167 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Dixit, S.B. Majumder, R.S. Katiyar, J. Mater. Sci. 41, 87–96 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Venkata Sreenivas Puli
    • 1
  • Dhiren K. Pradhan
    • 1
  • Ashok Kumar
    • 1
  • R. S. Katiyar
    • 1
  • Xiaofeng Su
    • 2
  • C. M. Busta
    • 2
  • M. Tomozawa
    • 2
  • Douglas B. Chrisey
    • 2
  1. 1.Department of Physics and Institute for Functional Nano MaterialsUniversity of Puerto RicoPuerto RicoUSA
  2. 2.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations