Advertisement

The bulk alloy microstructure and mechanical properties of Sn–1Ag–0.5Cu–xAl solders (x = 0, 0.1 and 0.2 wt. %)

  • Dhafer Abdul-Ameer Shnawah
  • Mohd Faizul Mohd Sabri
  • Irfan Anjum Badruddin
  • Suhana Binti Mohd Said
  • Fa Xing Che
Article

Abstract

This work investigates the effects of 0.1 and 0.2 wt. % Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn–1Ag–0.5Cu (SAC105) lead-free solder alloy. The addition of Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger Al–Ag IMC particles. Moreover, the addition of Al suppresses the formation of Cu6Sn5 IMC particles and leads to the formation of larger Al–Cu IMC particles. The Al added solders show a microstructure with large primary β-Sn grains. The tensile tests show that the 0.1 wt. % Al addition reduces the elastic modulus, yield strength and ultimate tensile strength (UTS). However, the 0.2 wt. % Al addition brings the yield strength up to SAC105 level and the UTS up to level slightly higher than that of SAC105, while its effect on reducing the elastic modulus becomes less dependent compared with the 0.1 wt. % Al addition. Moreover, both 0.1 and 0.2 wt. % Al additions deteriorate the total elongation. The two additions of Al slightly increase the solidus and liquids temperatures, while slightly reduce the pasty range, hence allowing the use of the Al-containing Sn–1Ag–0.5Cu alloys, to be consistent with the conditions of usage for conventional Sn–Ag–Cu solder alloys.

Keywords

Solder Joint Solder Alloy Bulk Solder SAC105 Solder SAC105 Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the financial support provided by University of Malaya (UM) under the IPPP Fund Project No.: PS117/2010B and the UMRG Fund under project No.: RG066/09AET.

References

  1. 1.
    M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng., R 27, 95–141 (2000)CrossRefGoogle Scholar
  2. 2.
    K.J. Puttlitz, G.T. Galyon, Impact of the ROHS directive on high-performance electronic systems. J. Mater. Sci. Mater. Electron. 18, 347–365 (2007)CrossRefGoogle Scholar
  3. 3.
    D.R. Frear, Issues related to the implementation of Pb-free electronic solders in consumer electronics. J. Mater. Sci. Mater. Electron. 18, 319–330 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Plieninger, M. Dittes, K. Pressel, Modern IC packaging trends and their reliability implications. Microelectron. Reliab. 46, 868–1873 (2006)Google Scholar
  5. 5.
    R.S. Pandher, B.G. Lewis, R. Vangaveti, B. Singh, Drop shock reliability of lead-free alloys—effect of micro-additives, in Proceedings of 57th IEEE-ECTC Conference, 2007, pp. 669–676Google Scholar
  6. 6.
    D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52, 90–99 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Huang, H.-S. Hwang, N.-C. Lee, A compliant and creep resistant SAC–Al (Ni) alloy, in Proceedings of 9th IEEE-EPTC Conference, 2007, pp. 693–701Google Scholar
  8. 8.
    D.Y.R. Chong, F.X. Che, J.H.L. Pang, K. Ng, J.Y.N. Tan, P.T.H. Low, Drop impact reliability testing for lead-free and lead-based soldered IC packages. Microelectron. Reliab. 46, 1160–1171 (2006)CrossRefGoogle Scholar
  9. 9.
    E.H. Wong, S.K.W. Seah, V.P.W. Shim, A review of board level solder joints for mobile applications. Microelectron. Reliab. 48, 1747–1758 (2008)CrossRefGoogle Scholar
  10. 10.
    E.H. Wong, S.K.W. Seah, W.D.V. Driel, J.F.J.M. Caers, N. Owens, Y.-S. Lai, Advances in the drop-impact reliability of solder joints for mobile applications. Microelectron. Reliab. 49, 139–149 (2009)CrossRefGoogle Scholar
  11. 11.
    B. Zhang, H. Ding, X. Sheng, Reliability study of board-level lead-free interconnections under sequential thermal cycling and drop impact. Microelectron. Reliab. 49, 530–536 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Kim, D. Suh, T. Millard, H. Kim, C. Kumar, M. Zhu, et al., Evaluation of high compliant low Ag solder alloys on OSP as a drop solution for the 2 level Pb-free interconnection, in Proceedings of 57th IEEE-ECTC Conference, 2007, pp. 1614–1619Google Scholar
  13. 13.
    R.S. Pandher, B.G. Lewis, R. Vangaveti, B. Singh, Drop shock reliability of lead-free alloys—effect of micro-additives, in Proceedings of 57th IEEE-ECTC, 2007, pp. 669–676Google Scholar
  14. 14.
    F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of Sn-Ag-Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloy. Compd. 507, 215–224 (2010)CrossRefGoogle Scholar
  15. 15.
    A.M. Yu, J.W. Jang, J.K. Kim, J.H. Lee, M.S. Kim, Improved reliability of Sn–Ag–Cu-In solder alloy by the addition of minor elements, in Proceedings of 60th IEEE-ECTC Conference, 2010, pp. 1524–1528Google Scholar
  16. 16.
    W. Kittidacha, A. Kanjanavikat, K. Vattananiyom, Effect of SAC alloy composition on drop and temp cycle reliability of BGA with NiAu pad finish, in Proceedings of 10th IEEE-EPTC Conference, 2008, pp. 1074–1079Google Scholar
  17. 17.
    Y. Kariya, T. Hossi, S. Terashima, M. Tanaka, M. Otsuka, Effect of silver content on the shear fatigue properties of Sn–Ag–Cu flip-chip interconnect. J. Electron. Mater. 33, 321–328 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Tanaka, T. Sasaki, T. Kobayashi, K. Tatsumi, Improvement in drop shock reliability of Sn–1.2Ag–0.5Cu BGA interconnects by Ni addition, in Proceedings of 56th IEEE-ECTC Conference, 2006, pp. 78–84Google Scholar
  19. 19.
    R. Pandher, R. Healey, Reliability of Pb-free solder alloys in demanding BGA and CSP applications, in Proceedings of 58th IEEE-ECTC Conference, 2008, pp. 2018–2023Google Scholar
  20. 20.
    W. Liu W, N.-C. Lee, A. Porras, Ding M, Gallagher A. Achieving high reliability low cost lead-free SAC slder joints via Mn or Ce doping, in Proceedings of 59th IEEE-ECTC Conference, 2009, pp. 994–1007Google Scholar
  21. 21.
    A.-M. Yu, J.-K. Kim, J.-H. Lee, M.-S. Kim, Tensile properties and drop/shock reliability of Sn–Ag–Cu-In based solder alloys, in Proceedings of 11th IEEE-EPTC Conference, 2009, pp. 679–682Google Scholar
  22. 22.
    Y.W. Lee, I.H. Kim, E.S. Kim, J.H. Lee, J.T. Moon, Improvement of wettability and drop impact reliability by Al addition in SnAgCu Solder, in Proceedings of 12th IEEE-EPTC Conference, 2010, pp. 429–432Google Scholar
  23. 23.
    A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn–Ag–Cu solder on Au/Ni metallized Cu pads. J. Alloy. Compd. 506, 216–223 (2010)CrossRefGoogle Scholar
  24. 24.
    Y.K. Jee, Y.-H. Xia, J. Yu, H.-W. Kang, and T.-Y. Lee, in Proceedings of 58th IEEE-ECTC Conference, 2008, pp. 491–494Google Scholar
  25. 25.
    H.R. Kotadia, O. Mokhtari, M. Bottrill, M.P. Clode, M.A. Green, S.H. Mannan, Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates. J. Electron. Mater. 12, 2720–2731 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Syed, J. Scanlan, S. Cha, W. Kang, E. Sohn, T. Kim, et al., Impact of package design and materials on reliability for temperature cycling, bend, and drop loading conditions, in Proceedings of 58th IEEE-ECTC Conference, 2008, pp. 1453–61Google Scholar
  27. 27.
    W. Kittidacha, A. Kanjanavikat, K. Vattananiyom, Effect of SAC alloy composition on drop and temp cycle reliability of BGA with NiAu pad finish, in Proceedings of 10th IEEE-ECTC Conference, 2008, pp .1074–1079Google Scholar
  28. 28.
    D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, H.B. Tejada, Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high strain rate conditions. Mater. Sci. Eng. A 46–461, 595–603 (2007)Google Scholar
  29. 29.
    R.O. Ritchie, Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103, 15–28 (1988)CrossRefGoogle Scholar
  30. 30.
    M. Hanson, K. Anderko, Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York, 1985), p. 84Google Scholar
  31. 31.
    M. Hanson, K. Anderko, Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York, 1985), p. 1Google Scholar
  32. 32.
    M. Hanson, K. Anderko, Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York, 1985), p. 135Google Scholar
  33. 33.
    G. E Dieter, Mechanical Metallurgy, 2nd edn. (McGraw-Hill, Tokyo, 1976), p. 222Google Scholar
  34. 34.
    G. E Dieter, Mechanical Metallurgy, 2nd edn. (McGraw-Hill, Tokyo, 1976), p. 224Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dhafer Abdul-Ameer Shnawah
    • 1
  • Mohd Faizul Mohd Sabri
    • 1
  • Irfan Anjum Badruddin
    • 1
  • Suhana Binti Mohd Said
    • 2
  • Fa Xing Che
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Electrical EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations