Effect of the different shapes of silver particles in conductive ink on electrical performance and microstructure of the conductive tracks

  • Xiaojian Yang
  • Wei He
  • Shouxu Wang
  • Guoyun Zhou
  • Yao Tang
  • Juanhong Yang


The electrical performance of the ink-jet printed conductive tracks composed of silver particles was investigated. Three different shapes silver particles were synthesized via chemical reduction method in the presence of poly vinyl pyrrolidone, and then they were used to study the shape influence on the electrical property and thermal stability of the conductive tracks. The resistivity variation and microstructure of the silver conductive tracks was monitored as a function of fillers content using a four-point probe and scanning electron microscopy as well as thermal analysis. In addition, we proposed the possible formation mechanism of conductive tracks with different fillers. It demonstrated that the conductive tracks filled with silver nanorods and nanoparticles could achieve the volume electrical resistivity of ~3.2 × 10−5 Ω cm after sintering at 160 °C for 15 min. Finally, we fabricated highly conductive silver patterns on a glass substrate by ink-jet printing.


Silver Nanoparticles Silver Particle Volumetric Shrinkage Silver Powder Bulk Silver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.-H. Ryu, J. App. Phys. 108, 102805–102809 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, Y. Li, B.S. Ong, P. Liu, S. Gardner, B. Chiang, Adv. Mater. 17, 184–187 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Muck, J. Fritz, V. Wagner, Appl. Phys. Lett. 86, 232101–232103 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Jang, D. Kim, B. Lee, S. Kim, M. Kang, D. Min, J. Moon, Adv. Funct. Mater. 18, 2862–2868 (2008)CrossRefGoogle Scholar
  5. 5.
    A.L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromol. Rapid Commun. 26, 315–318 (2005)CrossRefGoogle Scholar
  6. 6.
    B.I. Noh, J.W. Yoon, K.S. Kim, Y.C. Lee, S.B. Jung, J. Electron. Mater. 40, 35–41 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Byun, E.C. Hwang, S.Y. Lee, Y.Y. Lyu, J.H. Yim, J.Y. Kim, S. Chang, L.S. Pu, J.M. Kim, Mater. Sci. Eng. B 117, 11–16 (2005)CrossRefGoogle Scholar
  8. 8.
    Z.C. Liu, Y. Su, K. Varahramyan, Thin Solid Films 478, 275–279 (2005)CrossRefGoogle Scholar
  9. 9.
    K.E. Paul, W.S. Wong, S.E. Ready, R.A. Street, Appl. Phys. Lett. 83, 2070–2072 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 2123–2126 (2000)CrossRefGoogle Scholar
  11. 11.
    J.F. Dijksman, P.C. Duineveld, M.J.J. Hack, A. Pierik, J. Rensen, J.E. Rubingh, I. Schram, M.M. Vernhout, J. Mater. Chem. 17, 511–522 (2007)CrossRefGoogle Scholar
  12. 12.
    C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, Adv. Mater. 19, 3973–3978 (2007)CrossRefGoogle Scholar
  13. 13.
    J.G. Liu, Y. Cao, X.Y. Li, X.Y. Wang, X.Y. Zeng, Appl. Phys. A 100, 1157–1162 (2010)CrossRefGoogle Scholar
  14. 14.
    G.G. Rozenberg, E. Bresler, S.P. Speakman, C. Jeynes, J.H.G. Steinke, Appl. Phys. Lett. 81, 5249–5251 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Chung, S. Ko, N.R. Bieri, C.P. Grigoropoulos, D. Poulikakos, Appl. Phys. Lett. 84, 801–803 (2004)CrossRefGoogle Scholar
  16. 16.
    A.L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, P. O’ Brien, Macromol. Rapid Commun. 26, 315–318 (2005)CrossRefGoogle Scholar
  17. 17.
    C.H. Liu, X. Yu, Nanoscale Res. Lett. 6, 75–83 (2011)CrossRefGoogle Scholar
  18. 18.
    R. Durairaj, L.W. Man, J. Therm. Anal. Calorim. 105, 151–155 (2011)CrossRefGoogle Scholar
  19. 19.
    J.L. Song, Y. Chu, Y. Liu, L.L. Li, W.D. Sun, Chem. Commun. 10, 1223–1225 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Yamamtoo, Y. Kashiwagi, M. Nakamoto, Langmuir 22, 8581–8586 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Yamamoto, M. Nakamoto, J. Mater. Chem. 13, 2064–2065 (2003)CrossRefGoogle Scholar
  22. 22.
    G.E. Pike, C.H. Seager, Phys. Rev. B 10, 1421–1434 (1974)CrossRefGoogle Scholar
  23. 23.
    S.K. Mandal, A. Hangopadhyay, S. Chaudhuri, A.K. Pal, Vacuum 52, 485–490 (1999)CrossRefGoogle Scholar
  24. 24.
    D.Q. Lu, C.P. Wong, Int. J. Adhes. Adhes. 20, 189–193 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiaojian Yang
    • 1
  • Wei He
    • 1
  • Shouxu Wang
    • 1
  • Guoyun Zhou
    • 1
  • Yao Tang
    • 1
  • Juanhong Yang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations