Effect of substrate temperature on structural, morphological and optical properties of crystalline titanium dioxide films prepared by DC reactive magnetron sputtering

  • R. Ananthakumar
  • B. Subramanian
  • S. Yugeswaran
  • M. Jayachandran


Titanium dioxide (TiO2) thin films have been deposited with various substrate temperatures by dc reactive magnetron sputtering method onto glass substrate. The effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. Chemical composition of the films was investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) analysis of the films revealed that they have polycrystalline tetragonal structure with strong (101) texture. The surface morphological study revealed the crystalline nature of the films at higher substrate temperatures. The TiO2 films show the main bands in the range 400–700 cm−1, which are attributed to Ti–O stretching and Ti–O–Ti bridging. The transmittance spectra of the TiO2 thin film measured with various substrate temperatures ranged from 75 to 90 % in the visible light region. The optical band gap values of the films are increasing from 3.44 to 4.0 eV at growth temperature from 100 to 400 °C. The structural and optical properties of the films improved with the increase in the deposition temperature.


TiO2 Rutile Substrate Temperature Deposition Temperature TiO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (B.S) thanks the Department of Science & Technology, New Delhi, for a research grant under SERC scheme No SR/S1/PC/31/2008.


  1. 1.
    A. Kumar, S. Mandal, P.R. Selvakannan, R. Pasricha, A.B. Mandale, M. Sastry, Langmuir 19, 6277 (2003)CrossRefGoogle Scholar
  2. 2.
    N. Chandrasekharan, P.V. Kamat, J. Phys. Chem. B 104, 10851 (2000)CrossRefGoogle Scholar
  3. 3.
    G. Peto, G.L. Molnar, Z. Paszti, O. Geszti, A. Beck, L. Guczi, Mater. Sci. Eng. C 19, 95 (2002)CrossRefGoogle Scholar
  4. 4.
    W. Zhang, Y. Li, S. Zhu, F. Wang, Surf. Coat. Technol. 182, 192 (2004)CrossRefGoogle Scholar
  5. 5.
    Y. Matsumoto, Y. Ishikawa, M. Nishida, S. Ii, J. Phys. Chem. B 104, 4204 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Andersson, L.O. Sterlund, S. Ljungstrom, A. Palmqvist, J. Phys. Chem. B 106, 10674 (2002)CrossRefGoogle Scholar
  7. 7.
    G. Benk, P. Myllyperki, J. Pan, A.P. Yartsev, V. Sundstrom, J. Am. Chem. Soc. 125(5), 1118 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Solid State Ionics 151, 19 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Rothschild, A. Levakov, Y. Shapira, N. Ashkenasy, Y. Komem, Surf. Sci. 532, 456 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Thin Solid Films 351, 260 (1999)CrossRefGoogle Scholar
  11. 11.
    S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films 392, 338 (2001)CrossRefGoogle Scholar
  12. 12.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater. 10, 135 (1998)CrossRefGoogle Scholar
  13. 13.
    N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105(15), 3023 (2001)CrossRefGoogle Scholar
  14. 14.
    R. Mechiakh, N. Ben Sedrine, R. Chtourou, Appl. Surf. Sci. 257, 9103 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Sol. Energy Mater. Sol. Cells 88, 199 (2005)CrossRefGoogle Scholar
  16. 16.
    H.K. Pulker, G. Paesold, E. Ritter, Appl. Opt. 18, 1969 (1979)CrossRefGoogle Scholar
  17. 17.
    S. Sin-iti Kitazawa, Y. Choib, S. Yamamoto, Vacuum 74(3–4), 637 (2004)CrossRefGoogle Scholar
  18. 18.
    F. Meng, F. Lu, Vacuum 85, 84 (2010)CrossRefGoogle Scholar
  19. 19.
    S.K. Zheng, T.M. Wang, G. Xiang, C. Wang, Vacuum 62, 361 (2001)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, X. Ma, P. Chen, D. Yang, J. Cryst. Growth 300, 551 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Hossain, T. Takahashi, J. Nanosci. Nanotechnol. 11, 3222 (2011)CrossRefGoogle Scholar
  22. 22.
    D. Lucaa, L.S. Hsu, J. Optoelect. Adv. Mater. 5(4), 835 (2003)Google Scholar
  23. 23.
    S. Sankar, K.G. Gopchandran, Cryst. Res. Technol. 44(9), 989 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Musil, D. Herman, J. Sicha, J. Vac. Sci. Technol. A 24, 521 (2006)CrossRefGoogle Scholar
  25. 25.
    R. Gouttebaron, D. Cornelissen, R. Snyders, J.P. Dauchot, M. Wautelet, M. Hecq, Surf. Interface Anal. 30, 527 (2000)CrossRefGoogle Scholar
  26. 26.
    Z. Lei, L. Jian-She, Trans. Nonferrous Met. Soc. China 17, 772 (2007)CrossRefGoogle Scholar
  27. 27.
    L.J. Meng, C.P. Moreira de Sa, M.P. Dos Santos, Thin Solid Films 239, 117 (1994)CrossRefGoogle Scholar
  28. 28.
    B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Mater. Sci. Eng. B 176(1), 1 (2011)CrossRefGoogle Scholar
  29. 29.
    M.B. González, A. Wu, P.M. Vilarinho, Chem. Mater. 18, 1737 (2006)CrossRefGoogle Scholar
  30. 30.
    R. Zhang, L. Gao, Key Eng. Mater. 224–226, 573 (2002)CrossRefGoogle Scholar
  31. 31.
    D.C. Paine, T. Whistion, D. Janiac, R. Bersford, C.O. Yang, B. Lewis, J. Appl. Phys. 85, 8445 (1999)CrossRefGoogle Scholar
  32. 32.
    M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987)CrossRefGoogle Scholar
  33. 33.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  34. 34.
    K.L. Chopra, S.R. Das, Thin film solar cells (Plenum press, New York, 1983)Google Scholar
  35. 35.
    C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254, 2685 (2008)CrossRefGoogle Scholar
  36. 36.
    M.R. Teresa, M. Viseu, C. Isabel, Vacuum 52, 115 (1999)CrossRefGoogle Scholar
  37. 37.
    H.R. Fallaha, M. Ghasemia, A. Hassanzadehb, H. Stekic, Mater. Res. Bull. 42(3), 487 (2007)CrossRefGoogle Scholar
  38. 38.
    W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B 70, 261 (2000)CrossRefGoogle Scholar
  39. 39.
    H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 87, 847 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • R. Ananthakumar
    • 1
    • 2
  • B. Subramanian
    • 1
    • 3
  • S. Yugeswaran
    • 3
  • M. Jayachandran
    • 1
  1. 1.Electrochemical Materials Science DivisionCSIR, Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Nanomaterials and System Lab, Department of Mechanical System EngineeringJeju National UniversityJejuRepublic of Korea
  3. 3.Joining and Welding Research InstituteOsaka UniversityOsakaJapan

Personalised recommendations