Synthesis and electrical behavior study of Mn3O4 nanoceramic powder for low temperature NTC thermistor

  • P. S. Kohli
  • Pooja Devi
  • Pramod Reddy
  • K. K. Raina
  • M. L. Singla


Monodispersed Mn3O4 nanoparticles (NPs) were synthesized by reducing KMnO4 at room temperature in the presence of cetyltetrabutylammonium bromide surfactant and short chain tetra-n-butylammonium bromide co-surfactant. Structural characterization done through XRD, TEM and FT-IR analysis techniques showed mono dispersity (5–8 nm) and capping of the NPs with surfactants. The temperature dependent behavior of dc resistivity of the nanopowder pellets showed reproducible NTC characteristics over a range of 40–200 °C with two thermistor constants (β1 = 10,897 K for 40 °C < T < 107 °C and β2 = 1,529 K for 107 °C < T < 190 °C) and a negative temperature co-efficient of resistance (α = −0.111 K−1 at 40 °C). The thermistor constant (β1) and NTC values are found to be higher than that of bulk Mn3O4 in range of 40 °C < T < 107 °C. This observed behavior implies an enhanced sensitivity in nano-powder based thermistors. Temperature and frequency dependent impedance behavior of the as-synthesized samples evaluated over a temperature range of 40–140 °C and a frequency range of 1 kHz to 1 MHz delineates the role of electron hopping between Mn2+ and Mn3+ in the conduction process. These studies present monodispersed Mn3O4 NPs as promising material for NTC thermistor in the low temperature range 40 °C < T < 107 °C.


Mn3O4 TBAB Negative Temperature Coefficient Thermistor Constant Hydrazine Monohydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Dr. Pawan Kapur, Director, CSIO (CSIR) for permitting us to carry out these studies. The authors are also thankful to Dr. Tripathi (Physic Department, Punjab University), Mamta Sharma, and Dr. Akashdeep (CSIO) for their timely contributions in experimental work, valuable inputs and suggestions.


  1. 1.
    J. Fraden, Handbook of modern sensors: physics, designs, and applications, 3rd edn. (Springer Science, New York, 2003)Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    B.M. Zeffert, S. Hormats, Application of thermistors to cryoscopy. Anal. Chem. 21, 1420–1422 (1949)CrossRefGoogle Scholar
  6. 6.
    E.A. Boucher, J. Chem. Educ. 44, A935 (1967)CrossRefGoogle Scholar
  7. 7.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman & Hall, London, 1990), p. p141Google Scholar
  8. 8.
    D.C. Hill, H.L. Tuller, in Ceramic Sensors: Theory and Practice, ed. by R. Buchanan (Marcel Dekker, New York, 1986), p. 323Google Scholar
  9. 9.
    D. Saha, A.D. Sharma, A. Sen, H.S. Maiti, Preparation of bixbyite phase (MnxFe1−x)2O3 for NTC thermistor applications. Mat. Lett. 55, 403 (2002)CrossRefGoogle Scholar
  10. 10.
    M. Hosseini, The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceram. Int. 26, 245–249 (2000)CrossRefGoogle Scholar
  11. 11.
    K. Majid, S. Awasthi, M.L. Singla, Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material. Sens. Actuators. A Phys. 135, 113–118 (2007)CrossRefGoogle Scholar
  12. 12.
    K. Park, D.Y. Bang, Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci. Mater. Electron. 14, 81–87 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Einaga, A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions. J. Hazard. Mate. 164, 1236 (2009)CrossRefGoogle Scholar
  14. 14.
    L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation. J. Catal. 259, 66 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A 327, 261 (2007)CrossRefGoogle Scholar
  16. 16.
    N. Imamura, T. Mizoguchi, H. Yamauchi, M. Karppinen, Multivariate data analysis approach to understand magnetic properties of perovskite manganese oxides. J. Solid State Chem. 181, 1195 (2008)CrossRefGoogle Scholar
  17. 17.
    S.B. Ma, K.W. Nam, W.S. Yoon, S.M. Bak, X.Q. Yang, B.W. Cho, K.B. Kim, Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications. Electrochem. Commun. 11, 1575 (2009)CrossRefGoogle Scholar
  18. 18.
    K.W. Nam, C.W. Lee, X.Q. Yang, B.W. Cho, W.S. Yoon, K.B. Kim, Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes. J. Power Sources 188, 323 (2009)CrossRefGoogle Scholar
  19. 19.
    M.L. Singla, S. Sharma, B. Raj, V.R. Harchekar, Characterization of transition metal oxide ceramic material for continuous thermocouple and its use as NTC fire wire sensor. Sens. Actuators A Phys. 120, 337 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Lee, M. Yoo, Detectivity of thin-film NTC thermal sensors. Sens. Actuators A Phys. 96, 97–104 (2002)CrossRefGoogle Scholar
  21. 21.
    J. Ryu, K.Y. Kim, J.J. Choi, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, C. Park, Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition. J. Am. Ceram. Soc. 92, 3084–3087 (2009)CrossRefGoogle Scholar
  22. 22.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, New York, 1984)Google Scholar
  23. 23.
    M.L. Singla, R. Baldev, H.V. Rajaram, R.P. Bajpai, Ceramic mixture having negative temperature coefficient, a thermistor containing the ceramic mixture and the process for preparing same, US Patent No 6878311 dated 12 Apr 2005Google Scholar
  24. 24.
    J.L. Dormann, D. Fiorani, Magnetic properties of fine particles: proceedings of the International Workshop on Studies of Magnetic Properties of Fine Particles and their Relevance to Materials Science, Rome, Italy, November 4-8, 1991, North-Holland, 1992Google Scholar
  25. 25.
    S. Komaba, S.T. Myung, N. Kumagai, T. Kanouchi, K. Oikawa, T. Kamiyama, Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid State Ionics 152, 311 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Gibot, L. Laffont, Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J. Solid State Chem. 180, 695 (2007)CrossRefGoogle Scholar
  27. 27.
    B.L. Cushing, V.L. Kolesnichenko, C. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. J. Chem. Rev. 104, 3893 (2004)CrossRefGoogle Scholar
  28. 28.
    L. Tao, C.-G. Sun, M.-L. Fan, C.-J. Huang, H.-L. Wu, Z.-S. Chao, H.-S. Zhai, A redox-assisted supramolecular assembly of manganese oxide nanotube. Mater. Res. Bull. 41, 2035 (2006)CrossRefGoogle Scholar
  29. 29.
    P. Umadevi, C.L. Nagendra, Preparation and characterisation of transition metal oxide micro-thermistors and their application to immersed thermistor bolometer infrared detectors. Sens. Actuators A Phys. 96, 114–124 (2002)CrossRefGoogle Scholar
  30. 30.
    M.L. Singla, A. Negi, V. Mahajan, K.C. Singh, D.V.S. Jain, Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl. Catal. A-Gen. 323, 51–57 (2007)CrossRefGoogle Scholar
  31. 31.
    L. Wang, X. Wu, M. Pei, Z. Wu, X. Li, X. Tao, Facile synthesis of multi-branched gold nanostructures through a TBAB-assisted route in aqueous solution and their SERS property. Chinese J. Chem. 29, 185–190 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Ishii, M. Nakahira, T. Yamanaka, Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209 (1972)CrossRefGoogle Scholar
  33. 33.
    W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu, C.L. Zheng, Preparation of smooth single-crystal Mn3O4 Nanowires. Adv. Mat. 14, 837 (2002)CrossRefGoogle Scholar
  34. 34.
    O. Bricker, Some stability relations in the system MnO2-H2O at 25 °C and one atmosphere total pressure. Am. Mineral. 50, 1296 (1965)Google Scholar
  35. 35.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001), p. p170Google Scholar
  36. 36.
    B.L. Cushing, V.L. Kolenichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Ashoka, G. Nagaraju, G.T. Chandrappa, Mater. Lett. 64, 2538–2540 (2010)CrossRefGoogle Scholar
  38. 38.
    J.C. Southard, G.E. Moore, High-temperature heat content of Mn3O4, MnSiO3 and Mn3C. J. Am. Chem. Soc. 64, 1769 (1942)CrossRefGoogle Scholar
  39. 39.
    A. Azam, A.S. Ahmed, M. Chaman, A.H. Naqui, Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy. J. Appl. Phys. 108, 094329 (2010)CrossRefGoogle Scholar
  40. 40.
    A.M.M. Farea, S. Kumar, K.M. Batoo, Influence of the doping of Ti4 + ions on electrical and magnetic properties of Mn1+xFe2−2xTixO4 ferrite. J. Alloys Compd. 464, 361 (2008)CrossRefGoogle Scholar
  41. 41.
    A. Baykal, N. Bıtrak, B. Unal, H. Kavas, Z. Durmus, S. öZden, M.S. Toprak, Polyol synthesis of (polyvinylpyrrolidone) PVP-Mn3O4 nanocomposite. J. Alloys Compd. 502, 199 (2010)CrossRefGoogle Scholar
  42. 42.
    M.G. Bellino, D.G. Lammas, N.E.W. De Reca, A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. Adv. Mater. 18, 3005–3009 (2006)CrossRefGoogle Scholar
  43. 43.
    S.S. Umare, U.S. Waware, S. Ingole, Int. J. Polym. Anal. Charact. 10, 1 (2005)CrossRefGoogle Scholar
  44. 44.
    S.S. Umare, B.H. Shambharkar, R.S. Ningthoujam, Synthesis and characterization of polyaniline-Fe3O4 nanocomposite: Electrical conductivity, magnetic, electrochemical studies. Synth. Met. 160, 1815–1821 (2010)CrossRefGoogle Scholar
  45. 45.
    R. Regmi, R. Tackett, G. Lawes, Suppression of low-temperature magnetic states in Mn3O4 nanoparticles. J. Magn. Magn. Mater. 321, 2296 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • P. S. Kohli
    • 1
  • Pooja Devi
    • 1
  • Pramod Reddy
    • 1
  • K. K. Raina
    • 2
  • M. L. Singla
    • 1
  1. 1.Central Scientific Instruments Organization (CSIR)ChandigarhIndia
  2. 2.School of Physics & Material Science, TIETPatialaIndia

Personalised recommendations