Epitaxial growth of ZnO nanorods on electrospun ZnO nanofibers by hydrothermal method

  • Lingling Miao
  • Haiming Zhang
  • Yanjun Zhu
  • Yan Yang
  • Qin Li
  • Jing Li


In this paper, we report a new ZnO nanofibers-nanorods structure which was successfully prepared by the electrospun ZnO nanofibers as seed to guide hydrothermal epitaxial growth of the ZnO nanorods. The structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The XRD results indicate that ZnO nanofibers obtained at 600° have high crystallinity with a typical hexagonal wurtzite structure. Furthermore compared with the strongest diffraction of ZnO nanofibers in (101) plane, the diffraction from (002) plane of ZnO nanofibers-nanorods becomes the strongest. The SEM shows that the diameters of epitaxial-grown ZnO nanorods on ZnO nanofibers were approximately 100–200 nm. The PL spectrum shows that the ZnO nanofibers-nanorods have a broad green-yellow emission around 537 nm, in contrast to that of ZnO nanofibers, the peak had obvious redshift about 24 nm and the luminous intensity weakened.


Epitaxial Growth Composite Nanofibers Luminous Intensity Photoelectric Conversion Efficiency Zinc Acetate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.H. Huang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  2. 2.
    X.D. Bai, E.G. Wang, P.X. Gao, Z.L. Wang, Nano Lett 3, 1147 (2003)CrossRefGoogle Scholar
  3. 3.
    Z.S. Zhang, J.Y. Huang, H.P. He, S.S. Lin, H.P. Tang, H.M. Lu, Z.Z. Ye, Solid-State Electron 53, 578 (2010)CrossRefGoogle Scholar
  4. 4.
    G.G. Khan, N. Mukherjee, A. Mondal, N.R. Bandyopadhyay, A. Basumallick, Mater Chem Phys 122, 60 (2010)CrossRefGoogle Scholar
  5. 5.
    Q. Zhao, J.Y. Gao, R. Zhu, T.C. Cai, S. Wang, X.F. Song, Z.M. Liao, X.H. Chen, D.P. Yu, Nanotechnology 21, 6 (2010)Google Scholar
  6. 6.
    J.B. Shim, H.S. Kim, H. Chang, S.O. Kim, J Mater Sci Mater Electron 22, 1350 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, IEEE Trans Electron Dev 57, 1 (2010)CrossRefGoogle Scholar
  8. 8.
    Y.H. Li, J. Gong, Y.L. Deng, Sens Actuators, B 158, 176 (2010)CrossRefGoogle Scholar
  9. 9.
    X.J. Yue, T.S. Hong, X. Xu, Z. Li, Chin Phys Lett 28, 090701 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Xu, R. Wang, Q. Xiao, D. Zhang, Y. Liu, Chin Phys Lett 28, 070702 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, E. Tondello, Sen Actuators B 149, 1 (2010)CrossRefGoogle Scholar
  12. 12.
    O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Sen Actuators B 144, 56 (2010)CrossRefGoogle Scholar
  13. 13.
    Y.F. Tu, Q.M. Fu, J.P. Sang, X.W. Zou, J Mater Sci 47, 1541 (2012)CrossRefGoogle Scholar
  14. 14.
    D.F. Zhang, F.B. Zeng, J Mater Sci 47, 2155 (2012)CrossRefGoogle Scholar
  15. 15.
    Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, J Mater Sci Mater Electron 22, 1730 (2011)CrossRefGoogle Scholar
  16. 16.
    C.H. Chao, C.L. Chang, C.H. Chan, S.Y. Lien, K.W. Weng, K.S. Yao, Thin Solid Films 518, 7209 (2010)CrossRefGoogle Scholar
  17. 17.
    G.R.R.A. Kumara, K. Murakami, M. Shimomura, K. Velauthamurty, E.V.A. Premalal, R.M.G. Rajapakse, H.M.N. Bandara, J Photochem Photobiol 215, 1 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Arul, S. Agilan, R. Balasundaraprabhu, J Mater Sci Mater Electron 22, 1662 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Yun, S. Lim, J Solid State Chem 184, 273 (2011)CrossRefGoogle Scholar
  20. 20.
    C.Y. Lin, Y.H. Lai, H.W. Chen, J.G. Chen, C.W. Kung, R. Vittal, K.C. Ho, Energy Environ Sci 9, 3448 (2011)CrossRefGoogle Scholar
  21. 21.
    J.B. Bendall, L. Etgar, S.C. Tan, N. Cai, P. Wang, S.M. Zakeeruddin, M. Gratzel, M.E. Welland, Energy Environ Sci 8, 2903 (2011)CrossRefGoogle Scholar
  22. 22.
    M.H. Lai, M.W. Lee, G.J. Wang, M.F. Tai, Int J Electrochem Sci 6, 2122 (2011)Google Scholar
  23. 23.
    N.G.N. Angwafor, D.J. Riler, Phys Status Solidi A 205, 2351 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.J. Kim, J. Yoo, B.H. Kwon, Y.J. Hong, C.H. Lee, G.C. Yi, Nanotechnology 19, 315202 (2008)CrossRefGoogle Scholar
  25. 25.
    C.M. Shin, J.Y. Lee, J.H. Heo, J.H. Park, C.R. Kim, H. Ryu, J.H. Chang, C.S. Son, W.J. Lee, S.T. Tan, J.L. Zhao, X.W. Sun, Appl Surf Sci 255, 8501 (2009)CrossRefGoogle Scholar
  26. 26.
    R. Zabels, F. Muktepavela, L. Grigorjeva, E. Tamanis, M. Mishels-Piesins, Opt Mater 32, 818 (2010)CrossRefGoogle Scholar
  27. 27.
    W.Y. Zhang, J.G. Zhao, Z.Z. Liu, Z.J. Liu, Z.X. Fu, Appl Surf Sci 256, 4423 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Chandrasekar, L.F. Zhang, J.Y. Howe, N.E. Hedin, Y. Zhang, H. Fong, J Mater Sci 5, 1198 (2009)CrossRefGoogle Scholar
  29. 29.
    M.A. Kanjwal, N.A.M. Barakat, F.A. Sheikh, D.K. Park, H.Y. Kim, J Mater Sci 14, 3833 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Jonson, R. Sayskally, N. Morris, J. Pham, R. He, H.-J. Choi, Adv Funct Mater 12, 323 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lingling Miao
    • 1
  • Haiming Zhang
    • 1
  • Yanjun Zhu
    • 1
  • Yan Yang
    • 1
  • Qin Li
    • 1
  • Jing Li
    • 1
  1. 1.School of ScienceTianjin Polytechnic UniversityTianjinChina

Personalised recommendations