Advertisement

The formation of quantum dot structures in 30-pair InGaN/GaN multiple quantum wells after proper thermal annealing treatment

  • Yen-Sheng Lin
  • Ho-Hung Kuo
  • Shih-Wei Feng
Article

Abstract

This study systematically investigates the relation between strain energy and quantum dot (QD) formation for 30- pair InGaN/GaN multiple quantum wells (QW) by means of atomic force microscopy and high-resolution transmission electron microscopy. The results show that a higher number of quantum wells induce a higher strain energy and higher density of V-shaped defects, which increases the number of non-radiative centers. However, after thermal annealing, the strain energy accumulated from stacking faults is released and leads to the formation of a QDs structure. The strain energy around the quantum dot structure was calculated using by the NCEM Phase Extensions to the Digital Micrograph. The zone of higher strain energy was observed, which proves that the strain energy is the driving force for the formation of quantum dot structures.

Keywords

Quantum Well Misfit Dislocation Carrier Localization Thermal Annealing Process High Strain Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the National Science Council, Republic of China, under grants NSC 96-2623-7-214-002-NU and NSC96-2221-E-214-019-MY2.

References

  1. 1.
    Y. Narukawa, Y. Kawakami, M. funato, S. Fujita, S. Kawakami, Appl. Phys. Lett. 70, 981 (1997)CrossRefGoogle Scholar
  2. 2.
    M.D. McCluskey, L.T. Romano, B.S. Krusor, D.P. Bour, N.M. Johnson, S. Brennan, Appl. Phys. Lett. 72, 1730 (1998)CrossRefGoogle Scholar
  3. 3.
    Y.S. Lin, K.J. Ma, C. Hsu, S.W. Feng, Y.C. Cheng, C.C. Liao, C.C. Yang, C.C. Chuo, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 77, 2988 (2000)CrossRefGoogle Scholar
  4. 4.
    T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000)CrossRefGoogle Scholar
  5. 5.
    Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBarrs, Appl. Phys. Lett. 73, 1370 (1998)CrossRefGoogle Scholar
  6. 6.
    P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999)CrossRefGoogle Scholar
  7. 7.
    S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, T. Sota, Appl. Phys. Lett. 73, 2006 (1998)CrossRefGoogle Scholar
  8. 8.
    C.K. Choi, Y.M. Kwon, B.D. Little, G.H. Gainer, J.J. Song, Y.C. Chang, Phys. Rev. B 64, 245339 (2001)CrossRefGoogle Scholar
  9. 9.
    R. Langer, J. Simon, V. Oritz, N.T. Pelekanos, A. Barski, R. André, M. Godlewski, Appl. Phys. Lett. 74, 3827 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406, 865 (2000)CrossRefGoogle Scholar
  11. 11.
    I.H. Ho, G.B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996)CrossRefGoogle Scholar
  12. 12.
    S. Chichibu, T. Azuhata, T. Soda, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)CrossRefGoogle Scholar
  13. 13.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997)CrossRefGoogle Scholar
  14. 14.
    M.S. Minsky, S.B. Fleischer, A.C. Abare, J.E. Bowers, E.L. Hu, S. Keller, S.P. Denbaars, Appl. Phys. Lett. 72, 1066 (1998)CrossRefGoogle Scholar
  15. 15.
    J. Bai, T. Wang, S. Sakai, J. Appl. Phys. 88, 4729 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, S. Sakai, Appl. Phys. Lett. 74, 3128 (1999)CrossRefGoogle Scholar
  17. 17.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)Google Scholar
  18. 18.
    T.M. Hsu, Y.S. Lan, W.H. Chang, N.T. Yeh, J.I. Chyi, Appl. Phys. Lett. 76, 691 (2000)CrossRefGoogle Scholar
  19. 19.
    W.H. Lee, K.S. Kim, G.M. Yang, C.H. Hong, K.Y. Lim, E.K. Suh, H.J. Lee, H.K. Cho, J.Y. Lee, J. Korean Phys. Soc. 39, 136 (2001)Google Scholar
  20. 20.
    L.T. Romano, M.D. McCluskey, B.S. Krusor, D.P. Bour, C. Chua, S. Brennan, K.M. Yu, J. Crystal Growth 189/190, 33 (1998)CrossRefGoogle Scholar
  21. 21.
    C.C. Chuo, C.M. Lee, T.E. Nee, J.I. Chyi, Appl. Phys. Lett. 76, 3902 (2000)CrossRefGoogle Scholar
  22. 22.
    Y.S. Lin, K.J. Ma, C. Hsu, Y.Y. Chung, C.W. Liu, S.W. Feng, Y.C. Cheng, M.H. Mao, C.C. Yang, H.W. Chuang, C.T. Kuo, J.S. Tsang, T.E. Weirich, Appl. Phys. Lett. 80, 2571 (2002)CrossRefGoogle Scholar
  23. 23.
    O. Ambacher, H. Angerer, R. Dimitrov, W. Rieger, M. Stutzmann, G. Dollinger, A. Bergmaier, Hydrogen in gallium nitride growth by MOCVD. Phys. Status Solidi A 159(1), 105–112 (1997)CrossRefGoogle Scholar
  24. 24.
    L. Vegard, H. Dale, Untersuchungen über Mischkristalle und Legierungen. Z. Kristallogr. 67, 148–162 (1928)Google Scholar
  25. 25.
    A. Strecker, U. Salzberger, J. Mayer, Specimen preparation for transmission electron microscopy: reliable method for cross-sections and brittle materials. Prakt. Metallogr. 30, 482–495 (1993)Google Scholar
  26. 26.
    F. Hofer, P. Warbichler, Elemental mapping using energy filtered imaging, in Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS ATLAS, ed. by C.C. Ahn (Wiley-VCH Verlag, Weinheim, 2004), pp. 159–222Google Scholar
  27. 27.
    M.J. Hytch, Analysis of variations in structure from high resolution electron microscope images by combining real space and fourier space information. Microsc. Microanal. Microstruct. 8, 41–57 (1997)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Chung, Y.S. Lin, S.W. Feng, Y.C. Cheng, E.C. Lin, C.C. Yang, K.J. Ma, C. Hsu, H.W. Chuang, C.T. Kuo, J.S. Tsang, Quantum-well-width dependencies of post-growth thermal annealing effects of InGaN/GaN quantum wells. J. Appl. Phys. 93, 9693–9696 (2003)CrossRefGoogle Scholar
  29. 29.
    T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, C.J. Humphreys, Appl. Phys. Lett. 83(26), 5419–5421 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electronic EngineeringI-Shou UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan
  3. 3.Department of Applied PhysicsNational University of KaohsiungKaohsiungTaiwan, ROC

Personalised recommendations