Skip to main content
Log in

Microstructure and dielectric relaxor behavior of Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3–BaBi4Ti4O15 ceramics by tape casting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Plate-like BaBi4Ti4O15 powders were used to fabricate 0.952[Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3]–0.048BaBi4Ti4O15(abbr. BZCT-BBT) ceramics by tape casting. The microstructure and dielectric relaxor behaviors of BZCT-BBT ceramics were investigated. BZCT-BBT ceramics can be sintered well at 1,100 °C and mainly consisted of tetragonal perovskite phase and BaBi4Ti4O15 (abbr. BBT) phase. The lattice constants decrease as the sintering temperature increases due to substitution of Bi3+ for the A-site atoms of the perovskite structure. There is no obvious difference between the structure in the perpendicular and parallel directions, however, an evident difference of dielectric properties in the two directions is observed. Comparing with Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3(abbr. BZCT) ceramics, BZCT-BBT ceramics show obvious relaxor characteristics which are evidenced by the degree of diffuseness γ calculated using the modified Curie–Weiss law. Meanwhile, the addition of BBT decreases Tm, which results from the decrease of grain size. The reduction of εm is mainly caused by phase structure deviation from the coexisting rhombohedral and tetragonal structure to single tetragonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.M. Sabolsky, L. Maldonado, M.M. Seabaugh, S.L. Swartz, J. Electroceram. 25, 77 (2010)

    Article  CAS  Google Scholar 

  2. L.A. Schmitt, J. Kling, M. Hinterstein, M. Hoelzel, W. Jo, H.J. Kleebe, H. Fuess, J. Mater. Sci. 46, 4368 (2011)

    Article  CAS  Google Scholar 

  3. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005)

    Article  CAS  Google Scholar 

  4. F. Gao, C.S. Zhang, X.C. Liu, L.H. Cheng, C.S. Tian, J. Eur. Ceram. Soc. 27, 3453 (2007)

    Article  CAS  Google Scholar 

  5. S. Danwittayakul, N. Vaneesorn, S. Jinawath, A. Thanaboonsombut, Ceram. Int. 34, 765 (2008)

    Article  CAS  Google Scholar 

  6. F. Gao, L.H. Cheng, R.Z. Hong, J.J. Liu, Y.H. Yao, C.S. Tian, J. Mater. Sci. Mater. Electron. 19, 1228 (2008)

    Article  CAS  Google Scholar 

  7. Y.Q. Huang, Y.X. Liu, L.F. Gao, T.T. Liu, G.X. Zhang, J. Mater. Sci. Mater. Electron. 21, 1055 (2010)

    Article  CAS  Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  CAS  Google Scholar 

  9. Y.P. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  CAS  Google Scholar 

  10. D.J. Gao, K.W. Kwok, D.M. Lin, H.L.W. Chan, J. Phys. D Appl. Phys. 42, 035411 (2009)

    Article  Google Scholar 

  11. T.A. Skidmore, T.P. Comyn, S.J. Miline, J. Am. Ceram. Soc. 93, 624 (2010)

    Article  CAS  Google Scholar 

  12. D.M. Lin, K.W. Kwok, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-011-0425-7

    Google Scholar 

  13. B. Shao, J.H. Qiu, K.J. Zhu, X.M. Pang, Q.H. Meng, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-011-0504-9

    Google Scholar 

  14. S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009)

    Article  CAS  Google Scholar 

  15. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  16. S.W. Zhang, H.L. Zhang, B.P. Zhang, S. Yang, J. Alloy. Compd. 506, 131 (2010)

    Article  CAS  Google Scholar 

  17. P. Wang, Y.X. Li, Y.Q. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011)

    Article  CAS  Google Scholar 

  18. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Mater. Sci. Eng., B 176, 65 (2011)

    Article  CAS  Google Scholar 

  19. R.Z. Hong, F. Gao, J.J. Liu, Y.H. Yao, C.S. Tian, J. Mater. Sci. 43, 6126 (2008)

    Article  CAS  Google Scholar 

  20. F. Gao, R.Z. Hong, J.J. Liu, Y.H. Yao, C.S. Tian, J. Eur. Ceram. Soc. 28, 2063 (2008)

    Article  CAS  Google Scholar 

  21. S. Kumar, K.B.R. Varma, Curr. Appl. Phys. 11, 203 (2011)

    Article  Google Scholar 

  22. A. Chakrabarti, J. Bera, J. Alloy. Compd. 505, 668 (2010)

    Article  CAS  Google Scholar 

  23. F. Gao, L.H. Cheng, R.Z. Hong, J.J. Liu, Y.H. Yao, C.S. Tian, J. Mater. Sci. Mater. Electron. 19, 1228 (2008)

    Article  CAS  Google Scholar 

  24. H. Yilmaz, G.L. Messing, S.T. Mckinstry, J. Electroceram. 11, 207 (2003)

    Article  CAS  Google Scholar 

  25. A. Chakrabarti, J. Bera, Curr. Appl. Phys. 10, 574 (2010)

    Article  Google Scholar 

  26. J.D. Bobić, M.M. Vijatović, S. Greičius, J. Banys, B.D. Stojanović, J. Alloy. Compd. 499, 221 (2010)

    Article  Google Scholar 

  27. L.E. Cross, Ferroelectrics 76, 241 (1987)

    Article  CAS  Google Scholar 

  28. V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Aviation Science Foundation of China (2009ZF53061), Xi’an Applied Materials Innovation Fund Application (XA-AM-200808) and Postgraduate Starting Seed Foundation of Northwestern Polytechnical University (Z2011003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Gao, F., Cao, X. et al. Microstructure and dielectric relaxor behavior of Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3–BaBi4Ti4O15 ceramics by tape casting. J Mater Sci: Mater Electron 23, 1809–1816 (2012). https://doi.org/10.1007/s10854-012-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0667-z

Keywords

Navigation