Journal of Materials Science: Materials in Electronics

, Volume 23, Issue 9, pp 1698–1704 | Cite as

Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process

  • A. Roshanghias
  • A. H. Kokabi
  • Y. Miyashita
  • Y. Mutoh
  • M. Rezayat
  • H. R. Madaah-Hosseini


As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this study, accumulative roll bonding process was used as an effective alternative method for manufacturing high-strength, finely dispersed, void-free and highly uniform Sn–Ag–Cu/CeO2 nanocomposite solders. Microstructural investigation of nanocomposite solders revealed that homogenous distribution of CeO2 nanoparticle has been achieved and the eutectic as-cast morphology of the solder changed to recrystallized fine grained structure. As a result of severe plastic deformation during rolling, brittle and elongated intermetallics crushed into fine particles with an average diameter of a few hundred nanometers and dispersed uniformly in the solder matrix. Mechanical test results showed that the microhardness, 0.2% yield stress, and ultimate tensile strength of the composite solder increased with addition of CeO2 nanoparticles, while the ductility of the composite was decreased.


CeO2 Solder Joint Severe Plastic Deformation Solder Alloy Accumulative Roll Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y.C. Chan, D. Yan, Prog. Mater. Sci. 55, 428–475 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223–234 (2009)CrossRefGoogle Scholar
  3. 3.
    F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129–145 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, strengthening effects of zro2 nanoparticles on the microstructure and microhardness of Sn-3.5ag lead-free solder. J. Elec. Mater. 35, 1672–1679 (2006)CrossRefGoogle Scholar
  5. 5.
    L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990–993 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Wang, Y.C. Liu, C. Wei, H.X. Gao, P. Jiang, L.M. Yu, J. Alloys Compd. 480, 662–665 (2009)CrossRefGoogle Scholar
  7. 7.
    P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Mater. Sci.: Mater. Electron. 20, 571–576 (2008)CrossRefGoogle Scholar
  8. 8.
    R. Jamaati, M. Toroghinejad, Mater. Sci. Eng. A 527, 7430–7435 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Göken, H.W. Höppel, Adv. Mater. 23, 2663–2668 (2011)CrossRefGoogle Scholar
  10. 10.
    C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, M. Göken, Scripta Materialia 64, 245–248 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Alizadeh, M.H. Paydar, J. Alloys Compd. 492, 231 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Hwang, J. Lee, Z. Lee, J. Electron. Mater. 31, 1304–1308 (2002)CrossRefGoogle Scholar
  13. 13.
    L. Li, K. Nagai, F. Yin, Sci. Technol. Adv. Mater. 9, 1–11 (2008)Google Scholar
  14. 14.
    J. Bath, Lead-free soldering (Springer Science & Business Media, LLC, 2007), pp. 6–30Google Scholar
  15. 15.
    L.R. Vaidyanath, M.G. Nicholas, D.R. Milner, British Weld J. 6, 13–28 (1959)Google Scholar
  16. 16.
    N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Mater. 47, 893–899 (2002)CrossRefGoogle Scholar
  17. 17.
    K.N. Subramanian, Lead-free electronic solders a special issue of the Journal of Materials Science: Materials in Electronic (Springer Science + Business Media, LLC, 2007)Google Scholar
  18. 18.
    P. Lauro, S.K. Kang, W. Kyoung Choi, D. Shih, J. Electron. Mater. 32, 1432–1440 (2003)CrossRefGoogle Scholar
  19. 19.
    G. Krallics, J.G. Lenard, J. Mater. Process. Technol. 152, 154–161 (2004)CrossRefGoogle Scholar
  20. 20.
    Q. F. Wang, X. P. Xiao, J. Hu, W. W Xu, X.Q. Zhao, S. J. Zhao, in Proceedings of Sino-Swedish Structural Materials Symuosium, 2007Google Scholar
  21. 21.
    P. Babaghorbania, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458–461 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Sandar Tuna, M. Gupta, Compos. Sci. Technol. 67, 2657–2664 (2007)CrossRefGoogle Scholar
  23. 23.
    T.W. Clyne, P.J. Withers, An introduction to metal matrix composites (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Roshanghias
    • 1
  • A. H. Kokabi
    • 1
  • Y. Miyashita
    • 2
  • Y. Mutoh
    • 3
  • M. Rezayat
    • 1
  • H. R. Madaah-Hosseini
    • 1
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan
  3. 3.Department of System SafetyNagaoka University of TechnologyNagaokaJapan

Personalised recommendations