Journal of Materials Science: Materials in Electronics

, Volume 23, Issue 9, pp 1688–1697 | Cite as

Structural, dielectric and electrical properties of dysprosium based new complex electroceramics

  • R. Padhee
  • Piyush R. DasEmail author
  • B. N. Parida
  • R. N. P. Choudhary


The polycrystalline sample of K2Pb2Dy2W2Ti4Nb4O30 was synthesized by high—temperature solid—state reaction method (calcinations temperature ~1,050 °C and sintering temperature ~1,075 °C). The phase formation of the desired compound was confirmed by preliminary X-ray structural analysis. The scanning electron micrograph shows uniform plate and rod like grain distribution throughout the surface of the sample without much pores. Detailed studies of the nature of (1) variation of dielectric parameters with temperature (27–480 °C) and frequency (1 kHz–5 MHz) and (2) polarization (at three different temperatures) confirmed the existence of ferroelectricity in the material, with phase transition occurring at 316 °C. The temperature dependence of electrical parameters (impedance, modulus, conductivity, etc.) of the material exhibits a strong correlation between its micro-structure (i.e., bulk, grain boundary, etc.) and electrical properties. The nature of temperature dependent dc conductivity follows the Arrhenius equation, and reveals the negative temperature coefficient of resistance (NTCR) behaviour of the material. The material obeys Jonscher’s universal power law which is evident from the graphs of frequency dependence of ac conductivity.


Remnant Polarization Tungsten Bronze Diffuse Phase Transition Orthorhombic Crystal System Tungsten Bronze Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. Yang, L. Fang, L. Liu, C. Hu, X. Chen, H. Zhou, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-011-0391-0
  2. 2.
    K. Chandramouli, P. Viswarupachary, K. Ramam, J. Mater. Sci. 20, 977 (2009)Google Scholar
  3. 3.
    L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, H.X. Liu, J. Mater. Sci. 40(2), 533–535 (2005)CrossRefGoogle Scholar
  4. 4.
    P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. 21, 160 (2010)Google Scholar
  5. 5.
    V. Hornebecq, C. Elissalde, J.M. Reau, J. Ravez, Ferroelectrics 238(1), 57–63 (2000)CrossRefGoogle Scholar
  6. 6.
    L.-X. Pang, H. Wang, D. Zhou, W.H. Liu, Mater. Chem. Phys. 123(2–3), 727–730 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Kamba, S. Veljko, M. Kempa, M. Savinov, V. Bovtun, P. Vanek, J. Petzelt, M.C. Stennelt, I.M. Reaney, A.R. West, J. Electro. Chem. Soc. 25, 3069–3073 (2005)Google Scholar
  8. 8.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mater. Chem. Phys. 101(1), 228–233 (2007)CrossRefGoogle Scholar
  9. 9.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Alloys. Comp 448(1–2), 32–37 (2008)CrossRefGoogle Scholar
  10. 10.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Phys. Chem. Solids 68(4), 516–522 (2007)CrossRefGoogle Scholar
  11. 11.
    P.R. Das, B. Behera, R.N.P. Choudhary, B.K. Samantray, Res. Lett. Mat. Sci. 1–5 (2007), Article ID 91796Google Scholar
  12. 12.
    P.R. Das, L. Biswal, B. Behera, R.N.P. Choudhary, Mater. Res. Bull. 44(6), 1214–1218 (2009)CrossRefGoogle Scholar
  13. 13.
    D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. doi: 10.1007/s10854-011-0492-9
  14. 14.
    P. Ganguly, A.K. Jha, Int. Ferroelectr. 115(1), 149–156 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Ganguly, S. Jain, S. Devi, A.K. Jha, Ferroelectrics 381(1), 152–159 (2009)CrossRefGoogle Scholar
  16. 16.
    P. Ganguly, A.K. Jha, J. Am. Ceram. Soc. 94(6), 1725–1730 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Bouziane, M. Taibi, A. Boukhari, Mat. Chem. Phy. 129(3), 673–677 (2011)CrossRefGoogle Scholar
  18. 18.
    P.S. Sahoo, M.P.K. Sahoo, R.N.P. Choudhary, J. Mater. Sci. doi: 10.1007/s10854-011-0590-8
  19. 19.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction, vol. 966 (Wiley Chester, England, 1974)Google Scholar
  20. 20.
    POWD E W, An interactive powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, AustraliaGoogle Scholar
  21. 21.
    S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73(10), 3122–3125 (1990)CrossRefGoogle Scholar
  22. 22.
    L.E. Cross, Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  23. 23.
    M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557–5562 (2003)CrossRefGoogle Scholar
  24. 24.
    P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395(1–2), 98–103 (2007)CrossRefGoogle Scholar
  25. 25.
    J.R. Macdonald, Solid State Ion. 13(2), 147–149 (1984)CrossRefGoogle Scholar
  26. 26.
    R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhury, J. Alloys. Compd. 509, 6388–6394 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387(1–2), 56–62 (2007)CrossRefGoogle Scholar
  28. 28.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436(1–2), 226–232 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Plocharski, W. Wieczoreck, Solid State Ion. 28(30), 979–982 (1988)CrossRefGoogle Scholar
  30. 30.
    B. Behera, P. Nayak, R.N.P. Choudhary, Mat. Res. Bull. 43(2), 401–410 (2008)CrossRefGoogle Scholar
  31. 31.
    A.K. Jonscher, Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  32. 32.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41(2), 369–375 (2006)CrossRefGoogle Scholar
  33. 33.
    J.S. Kim, J.N. Kim, Jpn. J. Appl. Phys. 39, 3502 (2000)CrossRefGoogle Scholar
  34. 34.
    Z. Lu, J.P. Bonnet, J. Ravez, J.M. Reau, P. Hagenmuller, Phys. Chem. Solids 53, 1–9 (1992)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelesa Dielectric Press, London, 1983)Google Scholar
  36. 36.
    L.A. Dissado, R.H. Hill, Nature 279, 685 (1979)CrossRefGoogle Scholar
  37. 37.
    L.A. Dissado, R.H. Hill, Phill. Mag. B 41, 625 (1980)CrossRefGoogle Scholar
  38. 38.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)CrossRefGoogle Scholar
  39. 39.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electroch. 58(2), 429–432 (1975)CrossRefGoogle Scholar
  40. 40.
    D.K. Pradhan, R.N.P. Choudhary, C. Ranldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)CrossRefGoogle Scholar
  41. 41.
    S. Saha, T.P. Sihna, Phys. Rev. B 65, 134103 (2002)CrossRefGoogle Scholar
  42. 42.
    K. Funke, Jump relaxation in solid electrolytes. Solid State Chem. 22(2), 111–195 (1993)CrossRefGoogle Scholar
  43. 43.
    Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57(3–4), 235–244 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • R. Padhee
    • 1
  • Piyush R. Das
    • 1
    Email author
  • B. N. Parida
    • 1
  • R. N. P. Choudhary
    • 1
  1. 1.Department of Physics, Institute of Technical Education and ResearchSiksha ‘O’ Anusandahan UniversityKhandagiriIndia

Personalised recommendations