Skip to main content
Log in

Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have illustrated the role of hydrophilic nature of Si substrate played in the improvement of the contact performance between the vanadium dioxide (VO2) film and Si substrate. The VO2 films were fabricated by sol–gel method on single crystal Si substrate, which was pre-treated with hydrophilic solution and obtained a quite improved hydrophilicity. The bonding of Si substrate with precursor V2O5 gel was interpreted. The morphology and crystalline structure of the films were investigated by field-emission scanning electron microscopy, atomic force microscopy and X-ray diffraction. It is shown that the surface of the film on Si substrate with enhanced hydrophilicity is quite homogeneous and uniform. The film exhibits the formation of VO2 phase with (011) preferred orientation. Moreover, the optical pump induced phase transition property of the film was studied by terahertz time-domain spectroscopy, which revealed around 70% reduction of transmission at 0.1–1.5 THz in the VO2 film across the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Kim, B.G. Chae, D.H. Youn, G. Kim, K.Y. Kang, S.J. Lee, K. Kim, Y.S. Lim, Appl. Phys. Lett. 86, 242101 (2005)

    Article  Google Scholar 

  2. G. Guzman, F. Beteille, R. Morineau, J. Livage, J. Mater. Chem. 6, 505 (1996)

    Article  CAS  Google Scholar 

  3. A. Cavalleri, Cs. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)

  4. S. Lysenko, A.J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, H. Liu, Appl. Surf. Sci. 252, 5512 (2006)

    Article  CAS  Google Scholar 

  5. S. Lysenko, V. Vikhnin, G. Zhang, A. Rua, F. Fernandez, H. Liu, J. Electron. Mater. 35, 1866 (2006)

    Article  CAS  Google Scholar 

  6. Y. Tokura, Phys. Today 56, 50 (2003)

    Article  CAS  Google Scholar 

  7. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossman, J. Wu, Nat. Nanotechnol. 4, 732 (2009)

    Article  CAS  Google Scholar 

  8. D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, S. Ramanathan, J. Appl. Phys. 107, 114516 (2010)

    Article  Google Scholar 

  9. W.X. Huang, X.G. Yin, C.P. Huang, Q.J. Wang, T.F. Miao, Y.Y. Zhu, Appl. Phys. Lett. 96, 261908 (2010)

    Article  Google Scholar 

  10. Q. Gu, A. Falk, J.Q. Wu, O.Y. Lian, H. Park, Nano Lett. 7, 363 (2007)

    Article  CAS  Google Scholar 

  11. T. Driscoll, H.T. Kim, B.G. Chae, M. Di Ventra, D.N. Basov, Appl. Phys. Lett. 95, 043503 (2009)

    Article  Google Scholar 

  12. E. Strelcov, Y. Lilach, A. Kolmakov, Nano Lett. 9, 2322 (2009)

    Article  CAS  Google Scholar 

  13. H.C. Wang, X.J. Yi, Y. Li, Opt. Commun. 256, 305 (2005)

    Article  CAS  Google Scholar 

  14. J. Rozen, R. Lopez, R.F. Haglund, L.C. Feldman, Appl. Phys. Lett. 88, 081902 (2006)

    Article  Google Scholar 

  15. J.Y. Suh, E.U. Donev, R. Lopez, L.C. Feldman, R.F. Haglun, Appl. Phys. Lett. 88, 133115 (2006)

    Article  Google Scholar 

  16. K.W. Lee, J.J. Kweon, C.E. Lee, A. Gedanken, R. Ganesan, Appl. Phys. Lett. 96, 243111 (2010)

    Article  Google Scholar 

  17. D.J. Hilton, R.P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M.A. El Khakani, J.C. Kieffer, A.J. Taylor, R.D. Averitt, Phys. Rev. Lett. 99, 226401 (2007)

    Article  CAS  Google Scholar 

  18. T. Driscoll, H.T. Kim, B.G. Chae, B.J. Kim, Y.W. Lee, N.M. Jokerst, S. Palit, D.R. Smith, M. Di Ventra, D.N. Basov, Science 325, 1518 (2009)

    Article  CAS  Google Scholar 

  19. C.H. Chen, Y.H. Zhu, Y. Zhao, J.H. Lee, H.Y. Wang, A. Bernussi, M. Holtz, Z.Y. Fan, Appl. Phys. Lett. 97, 211905 (2010)

    Article  Google Scholar 

  20. P. Mandal, A. Speck, C. Ko, S. Ramanathan, Opt. Lett. 36, 1927 (2011)

    Article  CAS  Google Scholar 

  21. J.S. Kyoung, M. Seo, H. Park, S. Koo, H.S. Kim, Y.M. Park, B.J. Kim, K.J. Ahn, N.K. Park, H.T. Kim, D.S. Kim, Opt. Express 18, 16452 (2011)

    Article  Google Scholar 

  22. S.B. Choi, J.S. Kyoung, H.S. Kim, H.R. Park, D.J. Park, B.J. Kim, Y.H. Ahn, F. Rotermund, H.-T. Kim, K.J. Ahn, D.S. Kim, Appl. Phys. Lett. 98, 071105 (2011)

    Article  Google Scholar 

  23. N. Ozer, Thin Solid Films 305, 80 (1997)

    Article  Google Scholar 

  24. G. Stefanovich, A. Pergament, D. Stefanovich, J. Phys. Condens. Matter. 12, 8837 (2000)

    Article  CAS  Google Scholar 

  25. B.G. Chae, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, D.H. Youn, K.Y. Kang, Electrochem. Solid State Lett. 9, C12 (2006)

    Article  CAS  Google Scholar 

  26. T.I. Jeon, D. Grischkowsky, Phys. Rev. Lett. 78, 1106 (1997)

    Article  CAS  Google Scholar 

  27. J.M. Dai, J.Q. Zhang, W.L. Zhang, D. Grischkowsky, J. Opt. Soc. Am. B 21, 1379 (2004)

    Article  CAS  Google Scholar 

  28. Q.W. Shi, W.X. Huang, J.Z. Yan, Y.B. Zhang, M. Mao, Y. Zhang, Y.J. Xu, Y.X. Zhang, J. Sol–Gel Sci. Technol. 59, 591 (2011)

    Article  CAS  Google Scholar 

  29. Q.W. Shi, W.X. Huang, Y.X. Zhang, J.Z. Yan, Y.B. Zhang, M. Mao, Y. Zhang, M.J. Tu, ASC Appl. Mater. Interface 3, 3523 (2011)

    Article  CAS  Google Scholar 

  30. J.Z. Yan, W.X. Huang, Y. Zhang, X.J. Liu, M.J. Tu, Phys. Status Solidi A 205, 2409 (2008)

    Article  CAS  Google Scholar 

  31. J. Livage, G. Guzman, F. Beteille, P. Davidson, J. Sol–Gel Sci. Technol. 8, 857 (1997)

    CAS  Google Scholar 

  32. B. Bhushan, D.R. Tokachichu, M.T. Keener, S.C. Lee, Acta Biomater. 1, 327 (2005)

    Article  Google Scholar 

  33. S. Guhathakurta, A. Subramanian, J. Electrochem. Soc. 154, 136 (2007)

    Article  Google Scholar 

  34. B.G. Chan, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, K.Y. Kang, Jpn. J. Appl. Phys. 46, 738 (2007)

    Article  Google Scholar 

  35. C.H. Griffiths, H.K. Eastwood, J. Appl. Phys. 45, 2201 (1974)

    Article  CAS  Google Scholar 

  36. T.H. Yang, R. Aggarwal, A. Gupta, H.H. Zhou, R.J. Narayan, J. Narayan, J. Appl. Phys. 107, 053514 (2010)

    Article  Google Scholar 

  37. S.H. Chen, H. Ma, J. Dai, X.J. Yi, Appl. Phys. Lett. 90, 101117 (2007)

    Article  Google Scholar 

  38. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, Phys. Rev. B 76, 035104 (2007)

    Article  Google Scholar 

  39. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, J. Lumin. 129, 1802 (2009)

    Article  CAS  Google Scholar 

  40. P.U. Jepsen, B.M. Fischer, A. Thoman, H. Helm, J.Y. Suh, R. Lopez, R.F. Haglund, Phys. Rev. B 74, 205103 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financial supported by the National Natural Science Foundation of China (Grant Nos. 61072036 and 61001031), and the National Key Program of Fundamental Research of China (Grant Nos. 2007CB310401). The authors thank Analytical and Testing Center of Sichuan University for their XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxia Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Huang, W., Zhang, Y. et al. Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method. J Mater Sci: Mater Electron 23, 1610–1615 (2012). https://doi.org/10.1007/s10854-012-0637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0637-5

Keywords

Navigation