Advertisement

Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from molten salt method

  • X. H. Zheng
  • Z. H. Ma
  • P. J. Chen
  • D. P. Tang
  • N. Ma
Article

Abstract

The effects of Ti-doping on the decomposition behavior, crystal structure, sintering behavior and dielectric properties have been investigated for the Ti-doped BiFeO3 ceramics derived from molten salt method. XRD reveals the almost pure phase BiFeO3 is synthesized in the Ti-doped BiFeO3 powders. And the particle size of Ti-doped BiFeO3 powers obviously decreases with the increase of Ti content. However, the sintering temperature elevates significantly after Ti-doping. The DC resistivity can enhance by up to four orders of magnitude (from 104 to 108 Ωm) with only 5 at% Ti doping. But the dielectric constant is suppressed from 104 to 102, and dielectric loss obviously reduces with a small amount of Ti doping. The variation of dielectric properties has been discussed from the decomposition of BiFeO3 phase. The Ti-doping can effectively suppress the decomposition reaction in Ti-doped BiFeO3 ceramics.

Keywords

BiFeO3 Multiferroic Material Molten Salt Method Pure BiFeO3 Large Leakage Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University of Fujian Province (XSJRC2007-16) and Fuzhou University Science Foundation (2010-XQ-01).

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)CrossRefGoogle Scholar
  3. 3.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  4. 4.
    Zheng XH, Chen PJ, Ma N, Ma ZH (2011) J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-011-0533-4
  5. 5.
    J. Wang, J.B. Neaton, H. Zheng, Science 299, 1719 (2003)CrossRefGoogle Scholar
  6. 6.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)CrossRefGoogle Scholar
  8. 8.
    M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Maitre, M. Francois, J.C. Gachon, J. Phase Equilibria. Diffusion 25, 59 (2004)Google Scholar
  10. 10.
    S.M. Selbach, M.A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)CrossRefGoogle Scholar
  11. 11.
    M.M. Kumar, V.R. Palkar, K. Srinivas, V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Kumar, K.L. Yadav, J. Phys. Condens. Matter. 18, L503 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Lepoittevin, S. Malo, N. Barrier, N. Nguyen, G.V. Tendeloo, M. Hervieu, J. Solid State Chem. 181, 2601 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Schiemer, R. Withers, L. Noren, Y. Liu, L. Bourgeois, G. Stewart, Chem. Mater. 21, 4223 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, G. Xu, Ceram. Inter. 35, 1285 (2009)CrossRefGoogle Scholar
  16. 16.
    J.H. Xu, H. Ke, D.C. Jia, W. Wang, Y. Zhou, J. Alloys Comp. 472, 473 (2009)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X.F. Cao, Y.L. Ma, X.T. Chen, Z.L. Xue, J. Solid State Chem. 181, 1761 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, X.B. Chen, Chem. Mater. 19, 3598 (2007)CrossRefGoogle Scholar
  19. 19.
    X. He, L. Gao, Ceram. Inter. 35, 975 (2009)CrossRefGoogle Scholar
  20. 20.
    K.L. Yadav, J. Nanosci. Nanotechnol. 11, 2682 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19, 5431 (2007)CrossRefGoogle Scholar
  22. 22.
    X.H. Zheng, C. Zhang, B.L. Liang, D.P. Tang, X. Huang, X.L. Liu, J. Alloys Compd. 505, L10 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • X. H. Zheng
    • 1
    • 2
  • Z. H. Ma
    • 1
  • P. J. Chen
    • 1
  • D. P. Tang
    • 1
  • N. Ma
    • 1
  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.State Key Laboratory Breeding Base of PhotocatalysisFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations