Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties

  • D. M. Jundale
  • P. B. Joshi
  • Shashwati Sen
  • V. B. Patil


Nanocrystalline copper oxide (CuO) thin films have been synthesized by a sol–gel method using cupric acetate Cu (CH3COO) as a precursor. The as prepared powder was sintered at various temperatures in the range of (300–700 °C) and has been deposited onto a glass substrates using spin coating technique. The structural, compositional, morphological, electrical optical and gas sensing properties of CuO thin films have been studied by X-ray diffraction, Scanning Electron Microscopy (SEM), Four Probe Resistivity measurement and UV–visible spectrophotometer. The variation in annealing temperature affected the film morphology and optoelectronic properties. X-ray diffraction patterns of CuO films show that all the films are nanocrystallized in the monoclinic structure and present a random orientation. The crystallite size increases with increasing annealing temperature (40–45 nm).The room temperature dc electrical conductivity was increased from 10−6 to 10−5 (Ω cm)−1, after annealing due to the removal of H2O vapor which may resist conduction between CuO grain. The thermopower measurement shows that CuO films were found of n-type, apparently suggesting the existence of oxygen vacancies in the structure. The electron carrier concentration (n) and mobility (μ) of CuO films annealed at 400–700 °C were estimated to be of the order of 4.6–7.2 × 1019 cm−3 and 3.7–5.4 × 10−5 cm2 V−1 s−1 respectively. It is observed that CuO thin film annealing at 700 °C after deposition provide a smooth and flat texture suited for optoelectronic applications. The optical band gap energy decreases (1.64–1.46 eV) with increasing annealing temperature. It was observed that the crystallite size increases with increasing annealing temperature. These modifications influence the morphology, electrical and optical properties.


Crystallite Size Increase Annealing Temperature Cupric Oxide Crystallite Size Increase Cupric Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors (VBP) are grateful to DAE-BRNS, for financial support through the scheme no.2010/37P/45/BRNS/1442.


  1. 1.
    B. Balamurugan, B.R. Mehta, Thin Solid Films 396, 90 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Marabelli, G.B. Parraviciny, F.S. Orioli, Phys. Rev. B 52, 1433 (1995)CrossRefGoogle Scholar
  3. 3.
    J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)CrossRefGoogle Scholar
  4. 4.
    Y. Chaudhary, A. Agarwal, R. Shrivastav, V. Satsangi, S. Dass, Int. J. Hydrogen Energy 29, 131–134 (2004)CrossRefGoogle Scholar
  5. 5.
    F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982)CrossRefGoogle Scholar
  6. 6.
    P. Samarasekara, GESJ Phys. 2(4), 3 (2010)Google Scholar
  7. 7.
    N.S. Ramgir, M. Kaur, N. Datta, K.P. Muthe, D.K. Aswal, S.K. Gupta, J.K. Yakhmi, Sens. Actuators B Chem. 151, 90 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Ando, T. Kobayashi, M. Haruta, Catal. Today 36, 135 (1997)CrossRefGoogle Scholar
  9. 9.
    M. Ando, T. Kobayashi, M. Haruta, Sens. Actuators B 24–25, 851 (1995)CrossRefGoogle Scholar
  10. 10.
    A.P. Alivisatos, J. Phys. Chem. 100(31), 13226 (1996)CrossRefGoogle Scholar
  11. 11.
    M.A. Brookshire, C.C. Chusuei, D.W. Goodman, Langmuir 15, 2043 (1999)CrossRefGoogle Scholar
  12. 12.
    R. Zhou, T. Yu, X. Jiang, F. Chen, X. Zheng, Appl. Surf. Sci. 148, 263 (1999)CrossRefGoogle Scholar
  13. 13.
    J.R. Oritz, T. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, P. Bosh, J.A. de las Reyes, V.H. Lara, Appl. Surf. Sci. 174, 177 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Saito, M. Miyayama, K. Kaumoto, H. Yanagida, J. Am. Ceram. Soc. 68, 40 (1985)CrossRefGoogle Scholar
  15. 15.
    L. Armelao, D. Barreca, M. Bertappelle, G. Boltaro, C. Sada, E. Tondello, Thin Solid Films 442, 48 (2003)CrossRefGoogle Scholar
  16. 16.
    K.H. Yoon, W.J. Choiand, D.H. Kang, Thin Solid Films 372, 250 (2000)CrossRefGoogle Scholar
  17. 17.
    V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063 (1996)CrossRefGoogle Scholar
  18. 18.
    P.K. Ghosh, R. Maity, K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 6, 279 (2004)Google Scholar
  19. 19.
    K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, Y. Nakanishi, Mater. Lett. 28, 307 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Ghosh, C.N.R. Rao, Chem. Phys. Lett. 393, 493 (2004)CrossRefGoogle Scholar
  21. 21.
    B.T. Raut, S.G. Pawar, M.A. Chougule, S. Sen, V.B. Patil, J. Alloys Comp. 509, 9065 (2011)CrossRefGoogle Scholar
  22. 22.
    Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57, 81 (1996)CrossRefGoogle Scholar
  23. 23.
    T.P. Gujar, V.R. Shinde, C.D. Lokhande, R.S. Mane, S.-H. Han, Appl. Surf. Sci. 250, 161 (2005)CrossRefGoogle Scholar
  24. 24.
    S.G. Pawar, S.L. Patil, M.A. Chougule, V.B. Patil, J. Mater. Sci. Mater. Electron. 22, 260 (2011)CrossRefGoogle Scholar
  25. 25.
    R.R. Heikes, R.W. Ure, Thermoelectricity science and engineering, (Inter Science, New York, 1961), Chap. 3Google Scholar
  26. 26.
    V.B. Patil, S.G. Pawar, S.L. Patil, J. Mater. Sci. Mater. Electron 21, 355 (2010)CrossRefGoogle Scholar
  27. 27.
    R.L. Petriz, Phys. Rev. 104, 1508 (1956)CrossRefGoogle Scholar
  28. 28.
    G. Micocci, A. Tepore, R. Rella, O.P. Sicilian, Physica Status Solidi (a) 148, 431 (1995)CrossRefGoogle Scholar
  29. 29.
    J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119 (2003)CrossRefGoogle Scholar
  30. 30.
    R. Hong, J. Huang, H. He, Z. Fan, Appl. Surf. Sci. 242, 346 (2005)CrossRefGoogle Scholar
  31. 31.
    A.M. Chaparro, M.A. Martinez, C. Guillen, R. Bayon, M.T. Gutierrez, J. Herrero, Thin Solid Films 361, 177 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Appl. Phys. Lett 79, 3767 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. M. Jundale
    • 1
  • P. B. Joshi
    • 1
  • Shashwati Sen
    • 2
  • V. B. Patil
    • 1
  1. 1.Materials Research Laboratory, School of Physical SciencesSolapur UniversitySolapurIndia
  2. 2.Crystal Technology Section, Technical Physics DivisionBARCMumbaiIndia

Personalised recommendations