Microstructural evolutions of the Ag nano-particle reinforced SnBiCu-xAg/Cu solder joints during liquid aging

  • Jun Shen
  • Changfei Peng
  • Mali Zhao
  • Cuiping Wu


Ag nano-particle reinforced Sn30Bi0.5Cu-xAg (x = 1 wt%, 2 wt% and 5 wt%) solder pastes were prepared and reflowed on Cu substrates at 523 K. Then, the solder joints were liquid aged at 473 K for 6 and 12 h. Microstructural evolutions of these solder joints were observed by scanning electron microscopy (SEM). The results show that Bi-rich phase was refined in the as-reflowed Sn30Bi0.5Cu-xAg composite solder matrices. With the increase of the liquid aging time, Bi-rich phase was refined both in the Sn30Bi0.5Cu solder and in the Sn30Bi0.5Cu-xAg composite solders. The addition of Ag nano-particles changed the growth rate of the IMC layers during liquid aging due to the absorption effect of the Ag3Sn micro-particles.


Solder Joint Composite Solder Solder Matrix Cu6Sn5 Phase Composite Solder Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financial supported by a Key Scientific and Technological Project of Chongqing (Project No. CSTC, 2009AC4046), a Natural Science Foundation Project of CQ CSTC (Project No. CSTC, 2010BB4039), a Fundamental Research Funds for the Central Universities of P R China (Project No. CDJZR10130010) and a Fundamental Research Funds for the Central Universities (Project No. CDJXS10131155).


  1. 1.
    M. Abtewa, G. Selvaduray, Mater. Sci. Eng. R 27, 95–141 (2000)CrossRefGoogle Scholar
  2. 2.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55–105 (2002)CrossRefGoogle Scholar
  3. 3.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223–234 (2009)CrossRefGoogle Scholar
  4. 4.
    J.P. Liu, F. Guo, Y.F. Yan, W.B. Wang, Y.W. Shi, J. Electron. Mater. 33, 958–963 (2004)CrossRefGoogle Scholar
  5. 5.
    F. Tai, F. Guo, Z.D. Xia, Y.P. Lei, Y.F. Yan, J.P. Liu, Y.W. Shi, J. Electron. Mater. 34, 1357–1362 (2005)CrossRefGoogle Scholar
  6. 6.
    Y.W. Shi, J.P. Liu, Y.F. Yan, Z.D. Xia, Y.P. Lei, F. Guo, X.Y. Li, J. Electron. Mater. 37, 507–514 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Shen, Y.C. Chan, S.Y. Liu, Acta Mater. 57, 5196–5206 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1–60 (2005)CrossRefGoogle Scholar
  9. 9.
    S.H. Mannan, M.P. Clode, IEEE Trans. Adv. Pack 27, 508–514 (2004)CrossRefGoogle Scholar
  10. 10.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907–2922 (2006)CrossRefGoogle Scholar
  11. 11.
    H.W. Miao, J.G. Duh, B.S. Chiou, J. Mater, Sci. Mater. Electron. 11, 609–618 (2000)CrossRefGoogle Scholar
  12. 12.
    T. Lyman, The Ninth Edition of Metals Handbook (ASM International, Ohio, 1985), p. 126Google Scholar
  13. 13.
    T.B. Massalskl, Binary Alloy Phase Diagrams (ASM International, Ohio, 1990)Google Scholar
  14. 14.
    C.P. Peng, J. Shen, W.D. Xie, J. Chen, C.P. Wu, X.C. Wang, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-010-0214-8
  15. 15.
    J. Wang, H.S. Liu, L.B. Liu, Z.P. Jin, J. Electron. Mater. 35, 1842–1847 (2006)CrossRefGoogle Scholar
  16. 16.
    V.I. Dybkov, Growth Kinetics of Chemical Compound Layers (Cambridge International Science, Cambridge, 1998), pp. 135–136Google Scholar
  17. 17.
    Q.L. Yang, J.K. Shang, J. Electron. Mater. 34, 1363–1367 (2005)CrossRefGoogle Scholar
  18. 18.
    Q.J. Zhai, S.K. Guan, Q.Y. Shang, Alloy Thermo-Mechanism: Theory and Application (Metallurgy Industry Press, Beijing, 1999), pp. 156–160Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jun Shen
    • 1
  • Changfei Peng
    • 1
  • Mali Zhao
    • 1
  • Cuiping Wu
    • 1
  1. 1.College of Material Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations