Studies of electrical resistivity and magnetic properties of nanocrystalline CoFeCu thin films electrodeposited from citrate-added baths

  • S. Mehrizi
  • M. Heydarzadeh Sohi
  • E. Shafahian
  • A. A. Khangholi


In this study, nanocrystalline CoFeCu thin films were electrodeposited at different current densities from baths with natural pH (around 5.2) and containing 20 g/L citrate sodium. The relationship of films structure with soft magnetic properties and electrical resistivity, which are required for new generation magnetic head core, were investigated. SEM, EDS, XRD, TEM, VSM and four probe-point methods were used for characterization of the deposited films. The deposited films exhibited very uniform and homogenous structure with co-axis grains (confirmed by (111) and (110) poles figures and TEM images) throughout the coating. Overall, it was noticed that increasing current density from 1 to 24 mA/cm2 reduced both grain size (from 63 to 8 nm) and coercivity (from 20 to 1 Oe) of the films. In addition, plotting Log (Hc) versus Log (D 6) demonstrated that the coercivity of the films followed “D 6 law”. Moreover, increasing current density changed phase structures of the films from FCC (Cu)+FCC (Co) to FCC (Co) and then to FCC (Co)+BCC (Fe). The double phase films exhibited the lowest coercivity in comparison with single phase films due to their finer grain size. However, grain size had no effect on saturation magnetization of the films. An increase in current density up to 10 mA/cm2 also caused the substitution of diamagnetic copper with cobalt and iron in the deposit which led to reduction in saturation magnetization. Increasing current density also led to increasing grain boundaries in the deposits and hence, according to “scattering hypotheses”, enhanced the electrical resistivities.


Electrical Resistivity Saturation Magnetization CoFe Soft Magnetic Property Applied Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank University of Tehran and Iranian nanotechnology initiative council for financial support of this research.


  1. 1.
    B. Crozier, Q. Liu, D.G. Ivey, J. Mater. Sci. Mater. Electron. 22, 614–625 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Thanikaikarasan, T. Mahalingam, M. Raja, K. Taekyu, K.Y. Deak, J. Mater. Sci. Mater. Electron. 20, 727–734 (2009)CrossRefGoogle Scholar
  3. 3.
    Boubatra M, Azizi A, Schmerber G, Dinia A (2011) Morphology, structure, and magnetic properties of electrodeposited Ni films obtained from different pH solutions. J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-011-0366-1
  4. 4.
    E.I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, IBM. J. Res. Develop. 49, 103–126 (2005)Google Scholar
  5. 5.
    K. Ohashi, N. Morita, T. Tsuda, Y. Nonaka, IEEE Trans. Magn. 35, 2538–2540 (1999)CrossRefGoogle Scholar
  6. 6.
    K. Ohashi, Y. Yasue, IEEE Trans. Magn. 34, 1462–1464 (1998)CrossRefGoogle Scholar
  7. 7.
    T. Osaka, Electrochim. Acta 45, 3311 (2000)CrossRefGoogle Scholar
  8. 8.
    W. Wanga, G.H. Yuea, Y. Chena, W.B. Mib, H.L. Baib, D.L. Peng, J. Alloy. Compd. 475, 440–445 (2009)CrossRefGoogle Scholar
  9. 9.
    R.H. Yu, S. Basu, L. Ren, Y. Zhang, A. Parvizi-Majidi, K.M. Unruh, J.Q. Xiao, IEEE Trans. Magn. 36, 3388–3393 (2000)CrossRefGoogle Scholar
  10. 10.
    Y.T. Chen, C.C. Chang, J. Alloy. Compd. 498, 113–117 (2010)CrossRefGoogle Scholar
  11. 11.
    S.H. Liao, IEEE Trans. Magn. 23, 2981–2983 (1987)CrossRefGoogle Scholar
  12. 12.
    G. Herzer, IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRefGoogle Scholar
  13. 13.
    Y.P. Wua, C.H. Gu, J. Magn. Magn. Mater. 322, 3223–3226 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Sugaya, O. Inoue, K. Kugimiya, IEEE Trans. Magn. 30, 4945–4947 (1994)CrossRefGoogle Scholar
  15. 15.
    L.L. Wanga, W.T. Zheng, T. Ana, N. Mab, J. Gonga, J. Alloy. Compd. 495, 265–267 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, S. Wang, J. Zhou, J. Li, D. Jiao, X. Kou, J. Alloy. Compd. 474, 273–278 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.M. Kima, D. Choia, K.H. Kimb, J. Kimb, S.H. Hanc, H.J. Kimc, J. Magn. Magn. Mater. 239, 498–501 (2002)CrossRefGoogle Scholar
  18. 18.
    S. Hassani, K. Raeissi, M.A. Golozar, J. Appl. Electrochem. 38, 689–694 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Osaka, M. Takai, K. Hayashi, Y. Sogawa, IEEE Trans. Magn. 34, 1432–1434 (1998)CrossRefGoogle Scholar
  20. 20.
    A.E. Mohamad, S.M. Rashwan, S.M. Abdel-Wahaab, M.M. Kamel, J. Appl. Electrochem. 33, 1085–1092 (2003)CrossRefGoogle Scholar
  21. 21.
    J.O. Lee, H.K. Kim, G.H. Kim, W.Y. Jeung, J. Appl. Phys. 99, 08B704-1–08B704-3 (2006)Google Scholar
  22. 22.
    K.R. Murali, R.P. Richards, J. Mater. Sci. Mater. Electron. 17(5), 393–396 (2006)CrossRefGoogle Scholar
  23. 23.
    O. Ergenemana, K.M. Sivaramana, S. Panéa, E. Pellicer, A. Telekic, A.M. Hirtd, M.D. Barob, B.J. Nelson, Electrochim. Acta 56, 1399–1408 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Tang, D. Zhao, D. Shen, J. Zhang, B. Li, Y. Lu, X. Fan, Thin Solid Films 516, 2094–2099 (2008)CrossRefGoogle Scholar
  25. 25.
    K.Z. Rozman, J. Kovac, P.J. McGuiness, Z. Samardzija, B. Markoli, S. Kobe, Thin Solid Films 518, 1751–1755 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, D.G. Ivey, Mater. Sci. Eng. B 140, 15–22 (2007)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, D.G. Ivey, Chem. Mater. 16, 1189–1194 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Mehrizi, M. Heydarzadeh Sohi, S.A. Seyyed Ebrahimi, Surf. Coat. Technol. 205, 4757–4763 (2011)CrossRefGoogle Scholar
  29. 29.
    N. Kanani, Electroplating—Basic Principle, Processes and Practice (Elsevier, Berlin, 2004)Google Scholar
  30. 30.
    H. Bakar, ASM Handbook, Vol. 3 Alloy Phase Diagrams (ASM International, Materials Park, Ohio, 1992)Google Scholar
  31. 31.
    X. Liu, G. Zangari, J. Appl. Phys. 87, 5410–5412 (2000)CrossRefGoogle Scholar
  32. 32.
    P. Wißmann, H. Ulrich Finzel, Electrical Resistivity of Thin Metal Films (Springer, Berlin, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Mehrizi
    • 1
  • M. Heydarzadeh Sohi
    • 1
  • E. Shafahian
    • 1
  • A. A. Khangholi
    • 1
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations