Advertisement

Two-step sol–gel method for preparing MgO–MnO2–B2O3–Li2O co-added core-shell structural Ba0.55Sr0.40Ca0.05TiO3 powders and the dielectric properties of the composite ceramics

  • Shan Liu
  • Xiaolei Li
  • Huiming Ji
  • Qianqian Jia
  • Yugui Zhou
Article

Abstract

The Ba0.55Sr0.4Ca0.05TiO3–MgO (BSCT–MgO) composite powders possessing core-shell structure, small particle size and high specific surface area were prepared by the novel two-step sol–gel method which was based on the citric acid (CA)–ethylene glycol (EG) system. In this experiment, the Ba0.55Sr0.40Ca0.05TiO3 (BSCT) powders were firstly synthesized by chemical co-precipitation method. MgO [(MgO/BSCT)mass = 1] and MnO2 [(MnO2/BSCT)mole = 0.01] were added into the BSCT powders in the first sol–gel step. 1.5 wt% B2O3–Li2O as sintering aids was added into the composite powders during the second sol–gel step. The BSCT–MgO composite powders were detected to have a perfect core-shell structure which was detected by the transmission electron microscope. Perovskite BSCT and periclase MgO were confirmed to exist in the BSCT–MgO composite powders according to the X-ray diffraction patterns. The Ba0.55Sr0.4Ca0.05TiO3–MgO (BSCT–MgO) composite ceramics that synthesized with the core-shell powders were sintered at 1,000 °C for 2 h. According to the scanning electron microscope images, the grain sizes of BSCT and MgO in the BSCT–MgO composite ceramics were in the range of 0.5–2.0 μm and 1.0–2.5 μm, respectively. The dielectric constant of the BSCT–MgO composite ceramics was 210 and the dielectric loss was 0.0012 when tested at 1 MHz, room temperature. The BSCT–MgO composite ceramics were expected to be a promising candidate for applying as phase shifters or tunable components, etc, in the microwave field.

Keywords

MnO2 Dielectric Loss B2O3 Li2O Composite Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Mater. Chem. Phys. 104, 254 (2007)CrossRefGoogle Scholar
  2. 2.
    R.C. Pullar, Y. Zhang, L.F. Chen, S.F. Yang, J.R.G. Evans, N. McN, J. Eur. Ceram. Soc. 27, 3861 (2007)CrossRefGoogle Scholar
  3. 3.
    H.V. Alexandru, C. Berbecaru, F. Stanculescu, A. Ioachim, M.G. Banciu, M.I. Toacsen, L. Nedelcu, D. Ghetu, G. Stoica, Mat. Sci. Eng. B 118, 92 (2005)CrossRefGoogle Scholar
  4. 4.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  5. 5.
    J.-W. Liou, B.-S. Chiou, J. Am. Ceram. Soc. 80, 3093 (1997)CrossRefGoogle Scholar
  6. 6.
    C.L. Mao, X.L. Dong, T. Zeng, G.S. Wang, J. Mater. Sci. 42, 6917 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Hu, T.J. Price, D.M. Iddles, A. Uusimäki, H. Jantunen, J. Eur. Ceram. Soc. 25, 2531 (2005)CrossRefGoogle Scholar
  8. 8.
    M.-C. Chiu, Y.-C. Lee, F.-S. Shieu, J. Electrochem. Soc. 152, 194 (2005)CrossRefGoogle Scholar
  9. 9.
    C.-L. Huang, J.-Y. Chen, C.-Y. Jiang, J. Alloys Compd. 487, 420 (2009)CrossRefGoogle Scholar
  10. 10.
    J.J. Zhang, J.W. Zhai, X.J. Chou, X. Yao, Mater. Chem. Phys. 111, 409 (2008)CrossRefGoogle Scholar
  11. 11.
    J.Q. Qi, H.Y. Tian, Y. Wang, G.K.H. Pang, L.T. Li, H.L.W. Chan, J. Phys. Chem. B 109, 14006 (2005)CrossRefGoogle Scholar
  12. 12.
    H.Y. Tian, J.Q. Qi, Y. Wang, J. Wang, H.L.W. Chan, C.L. Choy, Nanotechnology 16, 47 (2005)CrossRefGoogle Scholar
  13. 13.
    J.S. Park, Y.H. Han, J. Electroceram. 17, 867 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Chem. Mater. 17, 4530 (2005)CrossRefGoogle Scholar
  15. 15.
    H.T. Jiang, J.W. Zhai, J.J. Zhang, X. Yao, J. Am. Ceram. Soc. 92, 2319 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Valant, D. Suvorov, J. Am. Ceram. Soc. 87, 1222 (2004)CrossRefGoogle Scholar
  17. 17.
    M.-L. Li, M.-X. Xu, J. Alloys Compd. 1–2, 311 (2009)CrossRefGoogle Scholar
  18. 18.
    M.L. Li, H. Liang, M.X. Xu, X.L. Li, T.X. Xu, Z.F. Yue, J. Chin. Ceram. Soc. 11, 1453 (2007)Google Scholar
  19. 19.
    J.J. Zhang, J.W. Zhai, X.J. Chou, X. Yao, J. Am. Ceram. Soc. 91, 3258 (2008)CrossRefGoogle Scholar
  20. 20.
    R.K. Zheng, J. Wang, X.G. Tang, Y. Wang, H.L.W. Chan, C.L. Choy, J. Appl. Phys. 98, 084108 (2005)CrossRefGoogle Scholar
  21. 21.
    M.-L. Li, M.-X. Xu, MRS Bull. 44, 937 (2009)CrossRefGoogle Scholar
  22. 22.
    S.N. Yun, X.L. Wang, B. Li, D.L. Xu, Solid State Commun. 143, 461 (2007)CrossRefGoogle Scholar
  23. 23.
    Q.W. Zhang, J.W. Zhai, X. Yao, J. Am. Ceram. Soc. 93, 2560 (2010)CrossRefGoogle Scholar
  24. 24.
    J.Y. Wang, J.J. Zhang, X. Yao, J. Alloys Compd. 505, 783 (2010)CrossRefGoogle Scholar
  25. 25.
    D.D. Li, L.Q. Wang, D.F. Xue, J. Alloys Compd. 492, 564 (2010)CrossRefGoogle Scholar
  26. 26.
    M.L. Li, M.X. Xu, H. Liang, X.L. Li, T.X. Xu, Acta Phys.-Chim. Sin. 24, 1405 (2008)CrossRefGoogle Scholar
  27. 27.
    Q. Xu, X.-F. Zhang, Y.-H. Huang, W. Chen, H.-X. Liu, M. Chen, B.-H. Kim, J. Alloys Compd. 488, 448 (2009)CrossRefGoogle Scholar
  28. 28.
    J.S. Park, M.H. Yang, Y.H. Han, Mater. Chem. Phys. 104, 261 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Hu, H. Jantunen, A. Deleniv, S. Leppävuori, S. Gevorgian, J. Am. Ceram. Soc. 87, 578 (2004)CrossRefGoogle Scholar
  30. 30.
    Q.Q. Jia, H.M. Ji, X.L. Li, Y.H. Xing, H. Liang, J. Mater. Sci. Mater. Electron. 22, 1450 (2011)CrossRefGoogle Scholar
  31. 31.
    L.C. Costa, A. Aoujgal, M.P.F. Grac, N. Hadik, M.E. Achour, A. Tachafine, J.C. Carru, A. Oueriagli, A. Outzourit, Physica B 405, 3741 (2010)CrossRefGoogle Scholar
  32. 32.
    M.W. Zhang, J.W. Zhai, H.T. Jiang, J.J. Zhang, X. Yao, Mat. Sci. Eng. B. 172, 311 (2010)CrossRefGoogle Scholar
  33. 33.
    X.F. Liang, Z.Y. Meng, W.B. Wu, J. Am. Ceram. Soc. 87, 2218–2222 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shan Liu
    • 1
  • Xiaolei Li
    • 1
  • Huiming Ji
    • 1
  • Qianqian Jia
    • 1
  • Yugui Zhou
    • 1
  1. 1.Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations