Structure–property correlations in the SiO2–PbO–Bi2O3 glasses



SiO2–PbO–Bi2O3 glasses having the composition of 35SiO2xPbO–(65−x)Bi2O3 (where x = 5, 10, 15, 20, 25, 35, 45; in mol%) have been prepared using the conventional melting and annealing method. Density, molar volume and Vickers microhardness of the prepared glasses were measured. Infrared (IR) and UV–visible spectroscopic techniques were used for structural studies of these glasses. Density as well as the microhardness increase systematically and, conversely, the molar volume decreases with increasing the lead oxide content. This behavior can be explained by the correlation with the glass structure. Increasing the lead oxide content (≥20 mol%) increases the network former PbO4 groups which can play an important role in increasing the connectivity and compactness of the glass matrix via increasing the cross-linking with the other constituent silicate and bismuthate structural units. The increased compactness may explain, in turn, the increase of the density and microhardness. IR spectra reinforce the idea that bismuth participates in the glassy network predominantly as BiO6 octahedral structural units. UV–VIS optical absorption spectra revealed UV-charge transfer absorption bands related to the contribution of Pb2+ ions in the region 350–385 nm; in addition to the extrinsic absorption of trace iron impurities in the range 220–290 nm. In the visible region, three optical bands in the ranges 415–435, 605–650 and 880–890 nm were correlated with the contribution of electronic transitions in Bi3+ ions. Calculation of the optical mobility gap and the width of the energy tail of glass from the UV–VIS absorption indicated a slight increase followed by a decrease in their values. The behavior change occurred at the glass in which PbO content is 20 mol% where lead oxide starts to participate into the glassy matrix as a network former. The combination of analytical FTIR and UV–visible spectroscopy provided a consistent picture of structure–property relations in this glass system.


Molar Volume Bi2O3 Glass Network Bismuth Oxide Bi2O3 Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.H. Dumbaugh, Phys. Chem. Glasses 27, 119 (1986)Google Scholar
  2. 2.
    A. Pan, A. Ghosh, J. Non-Cryst. Solids 271, 157 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Sun, L. Wen, S. Xu, S. Dai, L. Hu, Z. Jiang, Mater. Lett. 59, 959 (2005)CrossRefGoogle Scholar
  4. 4.
    S.Q. Man, E.Y.B. Pun, P.S. Chung, Appl. Phys. Lett. 77, 483 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Fu, Mater. Lett. 24, 207 (1995)CrossRefGoogle Scholar
  6. 6.
    Z. Pan, D.O. Henderson, S.H. Morgan, J. Non-Cryst. Solids 171, 134 (1994)CrossRefGoogle Scholar
  7. 7.
    T. Komatsu, R. Sato, K. Matusita, T. Yamashita, Jpn. J. Appl. Phys. 27, L550 (1998)CrossRefGoogle Scholar
  8. 8.
    N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, J. Alloys Compd. 480, 516 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Sreenivasu, V. Chandramouli, Bull. Mater. Sci. 23, 281 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Simon, M. Todea, J. Non-Cryst. Solids 352, 2947 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Bale, S. Rahman, A.M. Awasthi, V. Sathe, J. Alloys Compd. 460, 699 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Doweidar, Y.B. Saddeek, J. Non-Cryst. Solids 355, 348 (2009)CrossRefGoogle Scholar
  13. 13.
    W. Vogel, Glass Chemistry, 2nd edn. (Springer, Berlin, 1992), p. 158Google Scholar
  14. 14.
    A. Witkowska, J. Regbicki, A.D. Eicco, J. Alloys Compd. 324, 109 (2003)Google Scholar
  15. 15.
    M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, J. Alloys Compd. 479, 579 (2009)CrossRefGoogle Scholar
  16. 16.
    Hu. Yi, U.-L. Lin, N.-H. Liu, Mater. Chem. Phys. 49, 115 (1997)CrossRefGoogle Scholar
  17. 17.
    F.H. ElBatal, S.Y. Marzouk, N. Nada, S.M. Desouky, Physica B 391, 88 (2007)CrossRefGoogle Scholar
  18. 18.
    F.H. El Batal, Nucl. Instr. Meth. Phy. Res. B 254, 243 (2007)CrossRefGoogle Scholar
  19. 19.
    V.C.V. Gowda, C.N. Reddy, K.C. Radha, R.V. Anavekar, J. Etourneau, K.J. Rao, J. Non-Cryst. Solids 353, 1150 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Bale, M. Purnima, C. Srinivasu, S. Rahman, J. Alloys Compd. 457, 545 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Nocun, W. Mozgawa, J. Jedlinski, J. Najman, J. Mol. Struct. 744–747, 603 (2005)CrossRefGoogle Scholar
  22. 22.
    B. Karthikeyan, S. Mohan, Physica B 334, 298 (2003)CrossRefGoogle Scholar
  23. 23.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)CrossRefGoogle Scholar
  24. 24.
    E. Culea, L. Pop, P. Pascuta, M. Bosca, J. Mol. Struct. 924–926, 192 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Pop, E. Culea, R. Muntean, M. Culea, M. Bosca, J. Optoelect. Adv. Mater. 9, 1687 (2007)Google Scholar
  26. 26.
    Zs. Szaller, L. Kovacs, L. Poppl, J. Solid State Chem. 152, 392 (2000)CrossRefGoogle Scholar
  27. 27.
    P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea, Vib. Spectrosc. 48, 281 (2008)CrossRefGoogle Scholar
  28. 28.
    L. Baia, R. Rtefan, W. Kiefer, S. Simon, J. Raman Spectrosc. 36, 262 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Bale, N.S. Rao, S. Rahman, Solids State Sci. 10, 326 (2008)CrossRefGoogle Scholar
  30. 30.
    R. Iordanova, Y. Dimitriev, V. Dimitrov, S. Kassabov, D. Klissurski, J. Non-Cryst. Solids 204, 141 (1996)CrossRefGoogle Scholar
  31. 31.
    V.C.V. Gowda, R.V. Anavekar, K.J. Rao, J. Non-Cryst. Solids 351, 3421 (2005)CrossRefGoogle Scholar
  32. 32.
    M. Ganguli, M.H. Bhat, K.J. Rao, Phys. Chem. Glasses 40, 297 (1999)Google Scholar
  33. 33.
    B. Wang, S.P. Szu, M. Greenblatt, J. Non-Cryst. Solids 134, 249 (1991)CrossRefGoogle Scholar
  34. 34.
    M. Ganguli, K.J. Rao, J. Solid State Chem. 145, 65 (1999)CrossRefGoogle Scholar
  35. 35.
    A.M. Nassar, S.H.N. Radwan, H.M. Ragab, J. Non-Cryst. Solids 354, 4630 (2008)CrossRefGoogle Scholar
  36. 36.
    A.M. Zahra, C.y. Zahra, B. Piriov, J. Non-Cryst. Solids 155, 45 (1993)CrossRefGoogle Scholar
  37. 37.
    K. Witke, U. Harder, M. Will Fahrt, Y. Hiibert, R. Eich, Glass Tech. Ber. 69, 143 (1996)Google Scholar
  38. 38.
    P. Pascuta, E. Culea, Mater. Lett. 62, 4127 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Souto, M. Massot, M. Balkanski, D. Royer, Mater. Sci. Eng. B 64, 33 (1999)CrossRefGoogle Scholar
  40. 40.
    ASM Handbook, Volume 18, Friction. Lubrication and Wear Technology (ASM International, New York, 1992)Google Scholar
  41. 41.
    D. Ehrt, P. Ebeling, U. Natura, J. Non-Cryst. Solids 263&264, 240 (2000)CrossRefGoogle Scholar
  42. 42.
    D. Ehrt, C. R. Chimie 5, 679 (2002)CrossRefGoogle Scholar
  43. 43.
    P. Ebeling, D. Ehrt, M. Friedrich, Opt. Mater. 20, 101 (2002)CrossRefGoogle Scholar
  44. 44.
    D. Moncke, D. Ehrt, Opt. Mater. 25, 425 (2004)CrossRefGoogle Scholar
  45. 45.
    M.A. Azooz, F.H. ElBatal, Mater. Chem. Phys. 117, 59 (2009)CrossRefGoogle Scholar
  46. 46.
    S.Y. Marzouk, F.H. ElBatal, Nucl. Instrum. Methods Phys. Res. B 248, 90 (2006)CrossRefGoogle Scholar
  47. 47.
    D. Ehrt, J. Non-Cryst. Solids 196, 304 (1996)CrossRefGoogle Scholar
  48. 48.
    F.H. ElBatal, S.Y. Marzouk, N. Nada, S.A. Desouky, Philos. Mag. 90, 675 (2010)CrossRefGoogle Scholar
  49. 49.
    T. Murata, T. Mouri, J. Non-Cryst. Solids 353, 2403 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Bajaj, A. Khanna, B. Chen, J.G. Longstaffe, U.-W. Zwanziger, J.W. Zwanziger, Y. Gomez, F. Gonzalez, J. Non-Cryst. Solids 355, 45 (2009)CrossRefGoogle Scholar
  51. 51.
    G. Sharma, K. Singh, Manupriya, S. Mohan, H. Singh, S. Bindra, Radiat. Phys. Chem. 75, 959 (2006)CrossRefGoogle Scholar
  52. 52.
    N.F. Mott, E.A. Davis, Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  53. 53.
    D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)CrossRefGoogle Scholar
  54. 54.
    D.A. Davis, Jpn. J. Appl. Phys. 32, 178 (1993)Google Scholar
  55. 55.
    J. Singh, K. Shimakawa, Advances in amorphous semiconductors, in Advances in Condensed Matter Science, Vol. 5, ed. by D.D. Sarma, G. Kotliar, Y. Tokura (Taylor & Francis, London, 2003)Google Scholar
  56. 56.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  57. 57.
    J. Tauc, J. Non-Cryst. Solids 149, 97 (1987)Google Scholar
  58. 58.
    V. Simon, R. Pop, S.G. Chiuzbaian, M. Neumann, M. Coldea, S. Simon, Mater. Lett. 57, 2044 (2003)CrossRefGoogle Scholar
  59. 59.
    P.T. Deshmukh, D.K. Burghate, V.S. Deogaonkar, S.P. Yawale, S.V. Pakade, Bull. Mater. Sci. 26, 639 (2003)CrossRefGoogle Scholar
  60. 60.
    M. Salagram, V. Krishna Prasad, K. Subrahmanyam, J. Alloys Compd. 335, 228 (2002)CrossRefGoogle Scholar
  61. 61.
    T. Watanabe, K. Muratsubaki, Y. Benino, H. Saitoh, T. Komatsu, J. Mater. Sci. 36, 2427 (2001)CrossRefGoogle Scholar
  62. 62.
    M. Salagram, V. Krishna Prasad, K. Subrahmanyam, Opt. Mater. 18, 367 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research Centre (NRC)CairoEgypt

Personalised recommendations