Damping properties of epoxy-based composite embedded with sol–gel-derived Pb(Zr0.53Ti0.47)O3 thin film annealed at different temperatures

  • Dongyun Guo
  • Wei Mao
  • Yan Qin
  • Zhixiong Huang
  • Chuanbin Wang
  • Qiang Shen
  • Lianmeng Zhang


Pb(Zr0.53Ti0.47)O3 (PZT) thin films were prepared on Pt/Ti/SiO2/Si substrate by sol–gel method. The effect of annealing temperature on microstructure, ferroelectric and dielectric properties of PZT films was investigated. When the films were annealed at 550–850 °C, the single-phase PZT films were obtained. PZT films annealed at 650–750 °C had better dielectric and ferroelectric properties. The sandwich composites with epoxy resin/PZT film with substrate/epoxy resin were prepared. The annealing temperature of PZT films influenced their damping properties, and the epoxy-based composites embedded with PZT film annealed at 700 °C had the largest damping loss factor of 0.923.


Dielectric Loss Piezoelectric Material Ferroelectric Property Sandwich Composite Piezoelectric Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financed by the International Science and Technology Cooperation Program of China (Grant No. 2009DFB50470) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 50902108).


  1. 1.
    D.K. Anthony, F. Simon, J. Juan, J. Acoust. Soc. Am. 126, 86–92 (2009)CrossRefGoogle Scholar
  2. 2.
    A.A.A. Alghamdi, A. Dasgupta, J. Intell. Mater. Syst. Struct. 11, 631–641 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Cai, H. Zheng, K.C. Hung, Z.L. Zhang, Smart Mater. Struct. 15, 147–156 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Sun, D. Huang, Compos. Struct. 53, 437 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Erturk, O. Bilgen, D.J. Inman, Appl. Phys. Lett. 93, 224102 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Edery-Azulay, H. Abramovich, Compos. Struct. 74, 458 (2006)CrossRefGoogle Scholar
  7. 7.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Butt. 13, 525 (1978)CrossRefGoogle Scholar
  8. 8.
    M. Ma, X. Wang, Mater. Chem. Phys. 116, 191 (2009)CrossRefGoogle Scholar
  9. 9.
    H.L. Chan, K. Li, C. Choy, Mater. Sci. Eng. B 99, 29 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Tanimoto, Compos. Sci. Technol. 67, 213 (2007)CrossRefGoogle Scholar
  11. 11.
    W. Shields, J. Ro, A. Baz, Smart Mater. Struct. 7, 1 (1998)CrossRefGoogle Scholar
  12. 12.
    Z. Liu, Y. Wang, G. Huang, J. Wu, J. Appl. Polym. Sci. 108, 3670 (2008)CrossRefGoogle Scholar
  13. 13.
    M.C. Ray, IEEE Trans. Ultra. Ferro. Freq. Control 53, 2152 (2006)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, J. Miao, C.W. Tan, Sens. Actuators A 149, 277 (2009)CrossRefGoogle Scholar
  15. 15.
    Q. Lin, P. Ermanni, Int. J. Solids Struct. 41, 1741 (2004)CrossRefGoogle Scholar
  16. 16.
    Y. Li, F. Marcassa, R. Horowitz, R. Oboe, R. Evans, J. Dyn. Syst.-T. ASME 128, 568 (2006)CrossRefGoogle Scholar
  17. 17.
    C.J. Fu, W. Mao, Y. Qin, Z.X. Huang, D.Y. Guo, J. Mater. Sci.: Mater. Electron. 22, 911 (2011)CrossRefGoogle Scholar
  18. 18.
    A.L. Kholkin, E.K. Akdogan, A. Safari, P.F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dongyun Guo
    • 1
  • Wei Mao
    • 1
  • Yan Qin
    • 1
  • Zhixiong Huang
    • 1
  • Chuanbin Wang
    • 1
  • Qiang Shen
    • 1
  • Lianmeng Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations