Advertisement

Synthesis and characterization of sol–gel derived (Ba,Ca)(Ti,Zr)O3 nanoparticles

  • Min Wang
  • Ruzhong Zuo
  • Shishun Qi
  • Longdong Liu
Article

Abstract

A citrate precursor method was employed to synthesize lead-free perovskite 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) crystallites. Powders and gels were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, thermal analysis and transmission electron microscopy. It was indicated that BZT-0.5BCT transparent gel can be obtained via the chelation of citric acid with metal ions. Gels transformed into crystalline powders with single-phase perovskite structure when heat-treated above 650 °C, significantly lower than that in a solid-state reaction method. The primary particle size of the powders increased from 30 to 60 nm as the decomposition temperature was raised from 600 to 750 °C.

Keywords

Calcination Temperature Perovskite Structure Citrate Precursor Method Faint Peak Citric Acid Aqueous Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities, and by the National Natural Science Foundation of China (50972035) and a Program for New Century Excellent Talents in University, State Education Ministry (NCET-08-0766).

References

  1. 1.
    W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  2. 2.
    H.A.M. van Hal, W.A. Groen, S. Maassen, W.C. Keur, J. Eur. Ceram. Soc. 21, 1689 (2001)CrossRefGoogle Scholar
  3. 3.
    X.Z. Jing, Y.X. Li, D.R. Yin, Mater. Sci. Eng. B 99, 506 (2003)CrossRefGoogle Scholar
  4. 4.
    Q. Xu, X.L. Chen, W. Chen, S.T. Chen, B. Kim, J. Lee, Mater. Lett. 59, 2437 (2005)CrossRefGoogle Scholar
  5. 5.
    J.G. Hou, Y.F. Qu, W.B. Ma, D. Shan, J. Mater. Sci. 42, 6787 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Mercadelli, C. Galassi, A.L. Costa, S. Albonetti, A. Sanson, J. Sol. Gel. Sci. Technol. 46, 39 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Wang, Y.D. Hou, H.Y. Ge, M.K. Zhu, H. Yan, J. Eur. Ceram. Soc. 29, 2589 (2009)CrossRefGoogle Scholar
  8. 8.
    H.Q. Wang, R.Z. Zuo, Y. Liu, J. Fu, J. Mater. Sci. 45, 3677 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, J.G. Hao, J. Alloys Compd. 482, 137 (2009)CrossRefGoogle Scholar
  10. 10.
    Q.A. Harizanov, Mater. Lett. 34, 232 (1998)CrossRefGoogle Scholar
  11. 11.
    B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, UK, 2004)CrossRefGoogle Scholar
  12. 12.
    E.M.A. Hamzawy, A.F. Ali, Ceram. Int. 27, 607 (2001)CrossRefGoogle Scholar
  13. 13.
    H. Kozuka, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, vol. I Sol-Gel Processing (Kluwer, Netherlands, 2005)Google Scholar
  14. 14.
    R.M. Almeida, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, vol. II Characterization and Properties of Sol-Gel Materials and Products (Kluwer, Netherlands, 2005)Google Scholar
  15. 15.
    Y.P. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar
  16. 16.
    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)CrossRefGoogle Scholar
  17. 17.
    M.C. Chang, S.C. Yu, J. Mater. Sci. Lett. 19, 1323 (2000)CrossRefGoogle Scholar
  18. 18.
    Q.Y. He, X.G. Tang, J.X. Zhang, M.M. Wu, Nanostruct. Mater. 11, 287 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Min Wang
    • 1
  • Ruzhong Zuo
    • 1
  • Shishun Qi
    • 1
  • Longdong Liu
    • 1
  1. 1.Institute of Electro Ceramics and Devices, School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations