The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction

  • S. Y. Chang
  • L. C. Tsao
  • M. W. Wu
  • C. W. Chen


In this work, Sn3.0Ag0.7Cu (SAC) composite solders were produced by mechanically intermixing 0.5 wt% Al2O3 nanoparticles into Sn3.0Ag0.7Cu solder. The formation and growth kinetics of the intermetallic compounds (IMC) formed during the liquid–solid reactions between SAC-0.5Al2O3 composite solder and Cu substrates at various temperatures ranging from 250 to 325 °C were investigated, and the results were compared to the SAC/Cu system. Scanning electron microscopy (SEM) was used to quantify the interfacial microstructure for each processing condition. The thickness of interfacial intermetallic layers was quantitatively evaluated from SEM micrographs using imaging software. Experimental results showed that IMC could be dramatically affected by a small amount of intermixing 0.5 wt% Al2O3 nanoparticles into Sn3.0Ag0.7Cu solder. A continuous elongated scallop-shaped overall IMC layer was found at SAC/Cu interfaces. However, after the addition of Al2O3 nanoparticles, a discontinuous rounded scallop-shaped overall IMC layer appeared at SAC-0.5Al2O3/Cu interfaces. Kinetics analyses showed that growth of the overall IMC layer in SAC/Cu and SAC-0.5Al2O3/Cu soldering was diffusion controlled. The activation energies calculated for the overall IMC layer were 44.2 kJ/mol of SAC/Cu and 59.3 kJ/mol for SAC-0.5Al2O3/Cu soldering, respectively. This indicates that the presence of a small amount of Al2O3 nanoparticles is effective in suppressing the growth of the overall IMC layer.


Solder Joint Solder Alloy Composite Solder Solder Matrix Al2O3 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. A27, 95–141 (2000)Google Scholar
  2. 2.
    I. Anderson, J. Mater. Sci: Mater. Electron. 18, 55–76 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Glazer, J. Electron. Mater. 23, 693–700 (1994)CrossRefGoogle Scholar
  4. 4.
    J. Glazer, Inter. Mater. Rev. 40, 65–93 (1995)Google Scholar
  5. 5.
    J. Shen, Y.C. Chan, Microelectron. Rel. 49, 223–234 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Mavoori, S. Jin, J. Electron. Mater. 27, 1205–1210 (1998)CrossRefGoogle Scholar
  7. 7.
    L.C. Tsao, S.Y. Chuang, Mater. Des. 31, 990–993 (2010)CrossRefGoogle Scholar
  8. 8.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Des. 31, 4831–4835 (2010)CrossRefGoogle Scholar
  9. 9.
    J.H. Lee, J.H. Park, Y.S. Kim, D.H. Shin, J. Mater. Res. 16, 1227–1230 (2001)CrossRefGoogle Scholar
  10. 10.
    R.A. Gaqliano, M.E. Fine, J. Electron. Mater. 32, 1441–1447 (2003)CrossRefGoogle Scholar
  11. 11.
    A. Zribi, A. Clark, L. Zavalij, P. Borgesen, E.J. Cotts, J. Elect. Mater. 30, 1157–1164 (2001)CrossRefGoogle Scholar
  12. 12.
    K.S. Kim, S.H. Huh, K. Suganuma, Microelectr. Rel. 43, 259–267 (2003)CrossRefGoogle Scholar
  13. 13.
    W. Yang, E.Felton. Lawrence, Robert.W. Messler Jr, J. Electron. Mater. 24, 1465–1472 (1995)CrossRefGoogle Scholar
  14. 14.
    T.L. Su, L.C. Tsao, S.Y. Chang, T.H. Chuang, JMEPEG 11, 365–368 (2002)CrossRefGoogle Scholar
  15. 15.
    R.W. Wu, L.C. Tsao, S.Y. Chang, C.C. Jain, R.S. Chen, J.Mater Sci. Mater. Electron. 22, 1181–1187 (2011)CrossRefGoogle Scholar
  16. 16.
    R.J.K. Wassink, (Electrochemical Publications Ltd., Ayr, Scotland, 1989), p. 149Google Scholar
  17. 17.
    T.H. Chuang, M.W. Wu, S.Y. Chang, S.F. Ping, L.C. Tsao, J.Mater. Sci. Mater. Electron. 22, 1021–1027 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, J. Electron. Mater. 35, 1672–1679 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Harada, R. Satoh, IEEE Trans. Comp. Hybrids. Manuf. Tech. 13, 736–742 (1990)CrossRefGoogle Scholar
  20. 20.
    R.A. Gagliano, M.E. Fine, JOM 53, 33–38 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Sharif, Y.C. Chan, J. Alloys.Compd. 390, 67–93 (2005)CrossRefGoogle Scholar
  22. 22.
    K.H. Prakash, T. Sritharan, Acta Mater. 49, 2481–2489 (2001)CrossRefGoogle Scholar
  23. 23.
    D.Q. Yu, L. Wang, J. Alloys.Compd. 458, 542–547 (2008)CrossRefGoogle Scholar
  24. 24.
    H.L. John, L.H. Pang, X.Q. Xu et al., J Electron Mater 33, 1219–1226 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, J. Cho, J Electron Mater 38, 802–809 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J Mater Sci. Mater Electron. 21, 421–440 (2010)CrossRefGoogle Scholar
  27. 27.
    J.C. Leong, L.C. Tsao, C.J. Fang, C.C. Ping, J Mater Sci. Mater Electron. doi: 10.1007/s10854-011-0327-8
  28. 28.
    K. Suganuma, K.S. Kim, S.H. Huh, in International symposium on microelectronics (IMAPS, Washington, DC, 2001), pp. 529–534Google Scholar
  29. 29.
    L.C. Tsao, J. Alloys. Compd. 509, 2326–2333 (2011)CrossRefGoogle Scholar
  30. 30.
    L.C. Tsao, C.P. Chu, S.F. Peng, Microelectron. Eng. (2011). doi: 10.1016/j.mee.2011.04.034
  31. 31.
    L.C. Tsao, J. Alloys Compd. 509, 8441–8448 (2011)CrossRefGoogle Scholar
  32. 32.
    X.Y. Liu, M.L. Huang, C.M.L. Wu, L. Wang, J. Mater. Sci.: Mater. Electron. 21, 1046–1054 (2010)CrossRefGoogle Scholar
  33. 33.
    S.M.L. Nai, M. Gupta, J. Wei, in 2nd IEEE international nanoelectronics conference, (2008). pp. 15–19Google Scholar
  34. 34.
    S.M.L. Nai, J. Wei, M. Gupta, J. Alloys. Compd. 473, 100–106 (2009)CrossRefGoogle Scholar
  35. 35.
    A.K. Gain, T. Fouzder, Y.C. Chan, K. Winco, C. Yung, J. Alloys Compd. 509, 3319–3325 (2011)CrossRefGoogle Scholar
  36. 36.
    S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. (2011). doi: 10.1016/j.matdes.2011.06.044

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Y. Chang
    • 1
  • L. C. Tsao
    • 2
  • M. W. Wu
    • 3
  • C. W. Chen
    • 4
  1. 1.Department of Mechanical EngineeringNational Yunlin University of Science & TechnologyTouliu, YunlinTaiwan
  2. 2.Department of Materials EngineeringNational Pingtung University of Science & TechnologyNeipu, PingtungTaiwan
  3. 3.Department of Materials Science & EngineeringNational Formosa UniversityHuwei, YunlinTaiwan
  4. 4.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations