The effect of poling condition on the piezoelectric properties of 0.3PNN-0.7PZT ceramics in the vicinity of MPB

  • Li Zhang
  • Qingchi Sun
  • Weibing Ma
  • Yong Zhang
  • Haiquan Liu


Piezoelectric ceramics 0.3Pb(Ni1/3Nb2/3)O3–0.7Pb(ZrxTi(1−x))O3 (x = 0.42−0.46) were successfully fabricated via the conventional solid-state reaction. XRD demonstrated that the morphotrophic phase boundary (MPB) lay at x = 0.44. The effect of poling condition on the piezoelectric properties of ceramics in the vicinity of MPB was studied by the reserval of domains. The piezoelectric properties at MPB under the optimum poling condition of 2 kV/mm for 10 min in a silicon oil bath at 60 °C were d 33 of 538 pC/N and k p of 0.636, respectively.


Piezoelectric Property Spontaneous Polarization Poling Field Piezoelectric Ceramic Domain Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the development program of national ocean high technology research (project No.869) : a shear flow sensor with airfoil (2010AA09Z102) is used to measure the oceanic turbulence. We would like to warmly thank Yubin Wang for his theoretical guidance and for the technical assistance from Analytical Center of Tianjin University.


  1. 1.
    E.A. Buyanova, P.L. Strelets, I.A. Serova, Bull. Acad. Sci. USSR Phys. Ser. 29, 1877 (1965)Google Scholar
  2. 2.
    G. Robert, M. Demartin Maeder, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 84, 2869 (2001)CrossRefGoogle Scholar
  3. 3.
    F. Levassort, P. Tran-Huu-Hue, E. Ringaard, M. Lethiecq, J. Eur. Ceram. Soc. 21, 1361 (2001)CrossRefGoogle Scholar
  4. 4.
    S. Mahajan, C. Prakash, O.P. Thakur, J. Alloys Compd. 471, 507 (2009)CrossRefGoogle Scholar
  5. 5.
    E.F. Alberta, A.S. Bhalla, Int. J. Inorg. Mater 3, 987 (2001)CrossRefGoogle Scholar
  6. 6.
    N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96, 5103 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Cheol-Woo, N. Sahn, R. Jungho, U. Kenji, Y. Seok-Jin, J. Soon-Jong, S. Jae-Sung, JJ. Appl. Phys. 431, 205 (2004)Google Scholar
  8. 8.
    O. Babushkin, T. Lindbgck, J.C. Lucb, J.Y.M. Leblai, J. Eur. Ceram. Soc. 18, 737 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Wagner, D. Kahraman, H. Kungl, M.J. Hoffmann, J. Appl. Phys. 98, 024 (2005)CrossRefGoogle Scholar
  10. 10.
    G. Rujijanagul, N. Vittayakorn, Curr. Appl. Phys. 8, 88 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Rayashi, J. Tomizawa, T. Rasegawa, Y. Akiyama, J. Eur. Ceram. Soc. 24, 1037 (2004)CrossRefGoogle Scholar
  12. 12.
    X. Zhu, J. Zhu, S. Zhou, Z. Liu, N. Ming, J. Am. Ceram. Soc. 91, 227 (2008)CrossRefGoogle Scholar
  13. 13.
    T.M. Kamel, F.X.N.M. Kools, With, J. Eur. Ceram. Soc. 27, 2471 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Li Zhang
    • 1
  • Qingchi Sun
    • 1
  • Weibing Ma
    • 1
  • Yong Zhang
    • 2
  • Haiquan Liu
    • 3
  1. 1.Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinChina
  2. 2.State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina
  3. 3.Tianjin ZhongHuan Electronic Ceramic Co., Ltd.TianjinChina

Personalised recommendations